20 resultados para EFFICIENT RED ELECTROLUMINESCENCE
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.
Resumo:
Consumer-electronics systems are becoming increasingly complex as the number of integrated applications is growing. Some of these applications have real-time requirements, while other non-real-time applications only require good average performance. For cost-efficient design, contemporary platforms feature an increasing number of cores that share resources, such as memories and interconnects. However, resource sharing causes contention that must be resolved by a resource arbiter, such as Time-Division Multiplexing. A key challenge is to configure this arbiter to satisfy the bandwidth and latency requirements of the real-time applications, while maximizing the slack capacity to improve performance of their non-real-time counterparts. As this configuration problem is NP-hard, a sophisticated automated configuration method is required to avoid negatively impacting design time. The main contributions of this article are: 1) An optimal approach that takes an existing integer linear programming (ILP) model addressing the problem and wraps it in a branch-and-price framework to improve scalability. 2) A faster heuristic algorithm that typically provides near-optimal solutions. 3) An experimental evaluation that quantitatively compares the branch-and-price approach to the previously formulated ILP model and the proposed heuristic. 4) A case study of an HD video and graphics processing system that demonstrates the practical applicability of the approach.
Resumo:
A vitamin E extraction method for rainbow trout flesh was optimized, validated, and applied in fish fed commercial and Gracilaria vermiculophylla-supplemented diets. Five extraction methods were compared. Vitamers were analyzed by HPLC/DAD/fluorescence. A solid-liquid extraction with n-hexane, which showed the best performance, was optimized and validated. Among the eight vitamers, only α- and γ-tocopherol were detected in muscle samples. The final method showed good linearity (>0.999), intra- (<3.1%) and inter-day precision (<2.6%), and recoveries (>96%). Detection and quantification limits were 39.9 and 121.0 ng/g of muscle, for α-tocopherol, and 111.4 ng/g and 337.6 ng/g, for γ-tocopherol, respectively. Compared to the control group, the dietary inclusion of 5% G. vermiculophylla resulted in a slight reduction of lipids in muscle and, consequently, of α- and γ-tocopherol. Nevertheless, vitamin E profile in lipids was maintained. In general, the results may be explained by the lower vitamin E level in seaweed-containing diet. Practical Applications: Based on the validation results and the low solvent consumption, the developed method can be used to analyze vitamin E in rainbow trout. The results of this work are also a valuable information source for fish feed industries and aquaculture producers, which can focus on improving seaweed inclusion in feeds as a source of vitamin E in fish muscle and, therefore, take full advantage of all bioactive components with an important role in fish health and flesh quality.
Resumo:
Wireless body area networks (WBANs) are expected to play a significant role in smart healthcare systems. One of the most important attributes of WBANs is to increase network lifetime by introducing novel and low-power techniques on the energy-constrained sensor nodes. Medium access control (MAC) protocols play a significant role in determining the energy consumption in WBANs. Existing MAC protocols are unable to accommodate communication requirements in WBANs. There is a need to develop novel, scalable and reliable MAC protocols that must be able to address all these requirements in a reliable manner. In this special issue, we attracted high quality research and review papers on the recent advances in MAC protocols for WBANs.