75 resultados para Docker,ARM,Raspberry PI,single board computer,QEMU,Sabayon Linux,Gentoo Linux
Resumo:
Actualmente verifica-se que a complexidade dos sistemas informáticos tem vindo a aumentar, fazendo parte das nossas ferramentas diárias de trabalho a utilização de sistemas informáticos e a utilização de serviços online. Neste âmbito, a internet obtém um papel de destaque junto das universidades, ao permitir que alunos e professores possam interagir mais facilmente. A internet e a educação baseada na Web vêm oferecer acesso remoto a qualquer informação independentemente da localização ou da hora. Como consequência, qualquer pessoa com uma ligação à internet, ao poder adquirir informações sobre um determinado tema junto dos maiores peritos, obtém vantagens significativas. Os laboratórios remotos são uma solução muito valorizada no que toca a interligar tecnologia e recursos humanos em ambientes que podem estar afastados no tempo ou no espaço. A criação deste tipo de laboratórios e a sua utilidade real só é possível porque as tecnologias de comunicação emergentes têm contribuído de uma forma muito relevante para melhorar a sua disponibilização à distância. A necessidade de criação de laboratórios remotos torna-se imprescindível para pesquisas relacionadas com engenharia que envolvam a utilização de recursos escassos ou de grandes dimensões. Apoiado neste conceito, desenvolveu-se um laboratório remoto para os alunos de engenharia que precisam de testar circuitos digitais numa carta de desenvolvimento de hardware configurável, permitindo a utilização deste recurso de uma forma mais eficiente. O trabalho consistiu na criação de um laboratório remoto de baixo custo, com base em linguagens de programação open source, sendo utilizado como unidade de processamento um router da ASUS com o firmware OpenWrt. Este firmware é uma distribuição Linux para sistemas embutidos. Este laboratório remoto permite o teste dos circuitos digitais numa carta de desenvolvimento de hardware configurável em tempo real, utilizando a interface JTAG. O laboratório desenvolvido tem a particularidade de ter como unidade de processamento um router. A utilização do router como servidor é uma solução muito pouco usual na implementação de laboratórios remotos. Este router, quando comparado com um computador normal, apresenta uma capacidade de processamento e memória muito inferior, embora os testes efectuados provassem que apresenta um desempenho muito adequado às expectativas.
Resumo:
O objectivo desta Tese/Dissertação é conceber um sistema para a BOSCH Termotecnologia S.A., na qual exerço as funções de Engenheiro de Qualidade de Fornecedores de peças electrónicas, que permita testar funcionalmente dois tipos de PCBA (Printed Circuit Board Assembled) utilizados em dois modelos de esquentador estanque com denominação Celsius e Celsius Plus, produzidos nesta empresa para mercados de todo o Mundo. Os PCBA foram desenvolvidos internamente pelo departamento de ENG (Departamento de Desenvolvimento) e são actualmente peças de compra cujo fornecedor está localizado na China. Em primeiro lugar foi efectuado um estudo das necessidades da empresa relativamente aos projectos necessários para melhorar os processos de investigação de falhas e melhoria de Qualidade dos fornecedores de peças electrónicas, no contexto do departamento onde este projecto se insere. A conclusão chegada foi que existe uma grande necessidade de investigar avarias nas PCBA de compra do fornecedor asiático de forma rápida e precisa, de modo a que seja possível trabalhar mais activamente e rapidamente na melhoria de Qualidade do mesmo, melhorando, por exemplo, os seus processos produtivos. Em segundo lugar concebeu-se a solução a realizar. Optou-se por um conjunto hardware e software desenvolvido de raiz, que inclui um jig (gabarit anti-erro – Poke Yoke) dotado de agulhas para o teste FCT (Functional Circuit Test), um hardware de aquisição de dados analógicos e digitais adquirido para o projecto, um hardware de interface entre o PC (Personal Computer) e o hardware de aquisição de dados, e um software desenvolvido em LabVIEW versão 8.6 (Laboratory Virtual Instruments Engineering Workbench).
Resumo:
Food lipid major components are usually analyzed by individual methodologies using diverse extractive procedures for each class. A simple and fast extractive procedure was devised for the sequential analysis of vitamin E, cholesterol, fatty acids, and total fat estimation in seafood, reducing analyses time and organic solvent consumption. Several liquid/liquid-based extractive methodologies using chlorinated and non-chlorinated organic solvents were tested. The extract obtained is used for vitamin E quantification (normal-phase HPLC with fluorescence detection), total cholesterol (normal-phase HPLC with UV detection), fatty acid profile, and total fat estimation (GC-FID), all accomplished in <40 min. The final methodology presents an adequate linearity range and sensitivity for tocopherol and cholesterol, with intra- and inter-day precisions (RSD) from 3 to 11 % for all the components. The developed methodology was applied to diverse seafood samples with positive outcomes, making it a very attractive technique for routine analyses in standard equipped laboratories in the food quality control field.
Resumo:
This paper proposes a new architecture targeting real-time and reliable Distributed Computer-Controlled Systems (DCCS). This architecture provides a structured approach for the integration of soft and/or hard real-time applications with Commercial O -The-Shelf (COTS) components. The Timely Computing Base model is used as the reference model to deal with the heterogeneity of system components with respect to guaranteeing the timeliness of applications. The reliability and availability requirements of hard real-time applications are guaranteed by a software-based fault-tolerance approach.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within process control applications. Therefore, they constitute the foundation upon which real-time distributed computer-controlled systems can be implemented. P-NET is a fieldbus communication standard, which uses a virtual token-passing medium-access-control mechanism. In this paper pre-run-time schedulability conditions for supporting real-time traffic with P-NET networks are established. Essentially, formulae to evaluate the upper bound of the end-to-end communication delay in P-NET messages are provided. Using this upper bound, a feasibility test is then provided to check the timing requirements for accessing remote process variables. This paper also shows how P-NET network segmentation can significantly reduce the end-to-end communication delays for messages with stringent timing requirements.
Resumo:
In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability requirements are of major concern. Architectures for DCCS must be designed considering the integration of processing nodes and the underlying communication infrastructure. Such integration must be provided by appropriate software support services. In this paper, an architecture for DCCS is presented, its structure is outlined, and the services provided by the support software are presented. These are considered in order to guarantee the real-time and reliability requirements placed by current and future systems.
Resumo:
Fieldbus communication networks aim to interconnect sensors, actuators and controllers within distributed computer-controlled systems. Therefore, they constitute the foundation upon which real-time applications are to be implemented. A specific class of fieldbus communication networks is based on a simplified version of token-passing protocols, where each station may transfer, at most, a single message per token visit (SMTV). In this paper, we establish an analogy between non-preemptive task scheduling in single processors and the scheduling of messages on SMTV token-passing networks. Moreover, we clearly show that concepts such as blocking and interference in non-preemptive task scheduling have their counterparts in the scheduling of messages on SMTV token-passing networks. Based on this task/message scheduling analogy, we provide pre-run-time schedulability conditions for supporting real-time messages with SMTV token-passing networks. We provide both utilisation-based and response time tests to perform the pre-run-time schedulability analysis of real-time messages on SMTV token-passing networks, considering RM/DM (rate monotonic/deadline monotonic) and EDF (earliest deadline first) priority assignment schemes
Resumo:
In this paper, we analyse the ability of P-NET [1] fieldbus to cope with the timing requirements of a Distributed Computer Control System (DCCS), where messages associated to discrete events should be made available within a maximum bound time. The main objective of this work is to analyse how the network access and queueing delays, imposed by P-NET’s virtual token Medium Access Control (MAC) mechanism, affect the realtime behaviour of the supported DCCS.
Resumo:
Graphics processors were originally developed for rendering graphics but have recently evolved towards being an architecture for general-purpose computations. They are also expected to become important parts of embedded systems hardware -- not just for graphics. However, this necessitates the development of appropriate timing analysis techniques which would be required because techniques developed for CPU scheduling are not applicable. The reason is that we are not interested in how long it takes for any given GPU thread to complete, but rather how long it takes for all of them to complete. We therefore develop a simple method for finding an upper bound on the makespan of a group of GPU threads executing the same program and competing for the resources of a single streaming multiprocessor (whose architecture is based on NVIDIA Fermi, with some simplifying assunptions). We then build upon this method to formulate the derivation of the exact worst-case makespan (and corresponding schedule) as an optimization problem. Addressing the issue of tractability, we also present a technique for efficiently computing a safe estimate of the worstcase makespan with minimal pessimism, which may be used when finding an exact value would take too long.
Resumo:
Over the last three decades, computer architects have been able to achieve an increase in performance for single processors by, e.g., increasing clock speed, introducing cache memories and using instruction level parallelism. However, because of power consumption and heat dissipation constraints, this trend is going to cease. In recent times, hardware engineers have instead moved to new chip architectures with multiple processor cores on a single chip. With multi-core processors, applications can complete more total work than with one core alone. To take advantage of multi-core processors, parallel programming models are proposed as promising solutions for more effectively using multi-core processors. This paper discusses some of the existent models and frameworks for parallel programming, leading to outline a draft parallel programming model for Ada.
Resumo:
Kinematic redundancy occurs when a manipulator possesses more degrees of freedom than those required to execute a given task. Several kinematic techniques for redundant manipulators control the gripper through the pseudo-inverse of the Jacobian, but lead to a kind of chaotic inner motion with unpredictable arm configurations. Such algorithms are not easy to adapt to optimization schemes and, moreover, often there are multiple optimization objectives that can conflict between them. Unlike single optimization, where one attempts to find the best solution, in multi-objective optimization there is no single solution that is optimum with respect to all indices. Therefore, trajectory planning of redundant robots remains an important area of research and more efficient optimization algorithms are needed. This paper presents a new technique to solve the inverse kinematics of redundant manipulators, using a multi-objective genetic algorithm. This scheme combines the closed-loop pseudo-inverse method with a multi-objective genetic algorithm to control the joint positions. Simulations for manipulators with three or four rotational joints, considering the optimization of two objectives in a workspace without and with obstacles are developed. The results reveal that it is possible to choose several solutions from the Pareto optimal front according to the importance of each individual objective.
Resumo:
WiDom is a previously proposed prioritized medium access control protocol for wireless channels. We present a modification to this protocol in order to improve its reliability. This modification has similarities with cooperative relaying schemes, but, in our protocol, all nodes can relay a carrier wave. The preliminary evaluation shows that, under transmission errors, a significant reduction on the number of failed tournaments can be achieved.
Resumo:
Radio Link Quality Estimation (LQE) is a fundamental building block for Wireless Sensor Networks, namely for a reliable deployment, resource management and routing. Existing LQEs (e.g. PRR, ETX, Fourbit, and LQI ) are based on a single link property, thus leading to inaccurate estimation. In this paper, we propose F-LQE, that estimates link quality on the basis of four link quality properties: packet delivery, asymmetry, stability, and channel quality. Each of these properties is defined in linguistic terms, the natural language of Fuzzy Logic. The overall quality of the link is specified as a fuzzy rule whose evaluation returns the membership of the link in the fuzzy subset of good links. Values of the membership function are smoothed using EWMA filter to improve stability. An extensive experimental analysis shows that F-LQE outperforms existing estimators.
Resumo:
Consider the problem of scheduling sporadically-arriving tasks with implicit deadlines using Earliest-Deadline-First (EDF) on a single processor. The system may undergo changes in its operational modes and therefore the characteristics of the task set may change at run-time. We consider a well-established previously published mode-change protocol and we show that if every mode utilizes at most 50% of the processing capacity then all deadlines are met. We also show that there exists a task set that misses a deadline although the utilization exceeds 50% by just an arbitrarily small amount. Finally, we present, for a relevant special case, an exact schedulability test for EDF with mode change.
Resumo:
Consider a distributed computer system such that every computer node can perform a wireless broadcast and when it does so, all other nodes receive this message. The computer nodes take sensor readings but individual sensor readings are not very important. It is important however to compute the aggregated quantities of these sensor readings. We show that a prioritized medium access control (MAC) protocol for wireless broadcast can compute simple aggregated quantities in a single transaction, and more complex quantities with many (but still a small number of) transactions. This leads to significant improvements in the time-complexity and as a consequence also similar reduction in energy “consumption”.