40 resultados para Conventional Figurative Language Theory
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
Power law distributions, also known as heavy tail distributions, model distinct real life phenomena in the areas of biology, demography, computer science, economics, information theory, language, and astronomy, amongst others. In this paper, it is presented a review of the literature having in mind applications and possible explanations for the use of power laws in real phenomena. We also unravel some controversies around power laws.
Resumo:
In this paper, we intend to present some research carried out in a state Primary school, which is very well-equipped with ICT resources, including interactive whiteboards. The interactive whiteboard was used in the context of a Unit of Work for English learning, based on a traditional oral story, ‘Jack and the Beanstalk’. It was also used for reinforcing other topics like, ‘At the beach’, ‘In the city’, ‘Jobs’, etc. An analysis of the use of the digital board, which includes observation records as well as questionnaires for teachers and pupils, was carried out.
Resumo:
Timeliness guarantee is an important feature of the recently standardized IEEE 802.15.4 protocol, turning it quite appealing for Wireless Sensor Network (WSN) applications under timing constraints. When operating in beacon-enabled mode, this protocol allows nodes with real-time requirements to allocate Guaranteed Time Slots (GTS) in the contention-free period. The protocol natively supports explicit GTS allocation, i.e. a node allocates a number of time slots in each superframe for exclusive use. The limitation of this explicit GTS allocation is that GTS resources may quickly disappear, since a maximum of seven GTSs can be allocated in each superframe, preventing other nodes to benefit from guaranteed service. Moreover, the GTS may be underutilized, resulting in wasted bandwidth. To overcome these limitations, this paper proposes i-GAME, an implicit GTS Allocation Mechanism in beacon-enabled IEEE 802.15.4 networks. The allocation is based on implicit GTS allocation requests, taking into account the traffic specifications and the delay requirements of the flows. The i-GAME approach enables the use of one GTS by multiple nodes, still guaranteeing that all their (delay, bandwidth) requirements are satisfied. For that purpose, we propose an admission control algorithm that enables to decide whether to accept a new GTS allocation request or not, based not only on the remaining time slots, but also on the traffic specifications of the flows, their delay requirements and the available bandwidth resources. We show that our approach improves the bandwidth utilization as compared to the native explicit allocation mechanism defined in the IEEE 802.15.4 standard. We also present some practical considerations for the implementation of i-GAME, ensuring backward compatibility with the IEEE 801.5.4 standard with only minor add-ons. Finally, an experimental evaluation on a real system that validates our theoretical analysis and demonstrates the implementation of i-GAME is also presented
Resumo:
Dynamical systems theory in this work is used as a theoretical language and tool to design a distributed control architecture for a team of three robots that must transport a large object and simultaneously avoid collisions with either static or dynamic obstacles. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constraints are modeled as attractors (i.e. asymptotic stable states) of the behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotical stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
In this paper dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for a team of two robots that must transport a large object and simultaneously avoid collisions with obstacles (either static or dynamic). This work extends the previous work with two robots (see [1] and [5]). However here we demonstrate that it’s possible to simplify the architecture presented in [1] and [5] and reach an equally stable global behavior. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constrains are modeled as attractors (i.e. asymptotic stable states) of a behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotic stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
Dynamical systems theory is used here as a theoretical language and tool to design a distributed control architecture for a team of two mobile robots that must transport a long object and simultaneously avoid obstacles. In this approach the level of modeling is at the level of behaviors. A “dynamics” of behavior is defined over a state space of behavioral variables (heading direction and path velocity). The environment is also modeled in these terms by representing task constraints as attractors (i.e. asymptotically stable states) or reppelers (i.e. unstable states) of behavioral dynamics. For each robot attractors and repellers are combined into a vector field that governs the behavior. The resulting dynamical systems that generate the behavior of the robots may be nonlinear. By design the systems are tuned so that the behavioral variables are always very close to one attractor. Thus the behavior of each robot is controled by a time series of asymptotically stable states. Computer simulations support the validity of our dynamic model architectures.
Resumo:
Several standards appeared in recent years to formalize the metadata of learning objects, but they are still insufficient to fully describe a specialized domain. In particular, the programming exercise domain requires interdependent resources (e.g. test cases, solution programs, exercise description) usually processed by different services in the programming exercise life-cycle. Moreover, the manual creation of these resources is time-consuming and error-prone leading to what is an obstacle to the fast development of programming exercises of good quality. This paper focuses on the definition of an XML dialect called PExIL (Programming Exercises Interoperability Language). The aim of PExIL is to consolidate all the data required in the programming exercise life-cycle, from when it is created to when it is graded, covering also the resolution, the evaluation and the feedback. We introduce the XML Schema used to formalize the relevant data of the programming exercise life-cycle. The validation of this approach is made through the evaluation of the usefulness and expressiveness of the PExIL definition. In the former we present the tools that consume the PExIL definition to automatically generate the specialized resources. In the latter we use the PExIL definition to capture all the constraints of a set of programming exercises stored in a learning objects repository.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for the column design for any particular type of packing and contaminant avoiding the necessity of a pre-defined diameter used in the classical approach. It also renders unnecessary the employment of the graphical Eckert generalized correlation for pressure drop estimates. The hydraulic features are previously chosen as a project criterion and only afterwards the mass transfer phenomena are incorporated, in opposition to conventional approach. The design procedure was translated into a convenient algorithm using C++ as programming language. A column was built in order to test the models used either in the design or in the simulation of the column performance. The experiments were fulfilled using a solution of chloroform in distilled water. Another model was built to simulate the operational performance of the column, both in steady state and in transient conditions. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting system of ODE can be solved, allowing for the calculation of the concentration profile in both phases inside the column. In transient state the system of PDE was numerically solved by finite differences, after a previous linearization.
Resumo:
The effect of organic and conventional agricultural systems on the physicochemical parameters, bioactive compounds content, and sensorial attributes of tomatoes (‘‘Redondo’’ cultivar) was studied. The influence on phytochemicals distribution among peel, pulp and seeds was also accessed. Organic tomatoes were richer in lycopene (+20%), vitamin C (+30%), total phenolics (+24%) and flavonoids (+21%) and had higher (+6%) in vitro antioxidant activity. In the conventional fruits, lycopene was mainly concentrated in the pulp, whereas in the organic ones, the peel and seeds contained high levels of bioactive compounds. Only the phenolic compounds had a similar distribution among the different fractions of both types of tomatoes. Furthermore, a sensorial analysis indicated that organic farming improved the gustative properties of this tomato cultivar.
Resumo:
Benign focal epilepsy in childhood with centro-temporal spikes (BECTS) is one of the most common forms of idiopathic epilepsy, with onset from age 3 to 14 years. Although the prognosis for children with BECTS is excellent, some studies have revealed neuropsychological deficits in many domains, including language. Auditory event-related potentials (AERPs) reflect activation of different neuronal populations and are suggested to contribute to the evaluation of auditory discrimination (N1), attention allocation and phonological categorization (N2), and echoic memory (mismatch negativity – MMN). The scarce existing literature about this theme motivated the present study, which aims to investigate and document the existing AERP changes in a group of children with BECTS. AERPs were recorded, during the day, to pure and vocal tones and in a conventional auditory oddball paradigm in five children with BECTS (aged 8–12; mean = 10 years; male = 5) and in six gender and age-matched controls. Results revealed high amplitude of AERPs for the group of children with BECTS with a slight latency delay more pronounced in fronto-central electrodes. Children with BECTS may have abnormal central auditory processing, reflected by electrophysiological measures such as AERPs. In advance, AERPs seem a good tool to detect and reliably reveal cortical excitability in children with typical BECTS.
Resumo:
Phonological development was assessed in six alphabetic orthographies (English, French, Greek, Icelandic, Portuguese and Spanish) at the beginning and end of the first year of reading instruction. The aim was to explore contrasting theoretical views regarding: the question of the availability of phonology at the outset of learning to read (Study 1); the influence of orthographic depth on the pace of phonological development during the transition to literacy (Study 2); and the impact of literacy instruction (Study 3). Results from 242 children did not reveal a consistent sequence of development as performance varied according to task demands and language. Phonics instruction appeared more influential than orthographic depth in the emergence of an early meta-phonological capacity to manipulate phonemes, and preliminary indications were that cross-linguistic variation was associated with speech rhythm more than factors such as syllable complexity. The implications of the outcome for current models of phonological development are discussed.