26 resultados para Confocal Scanning Laser Microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abrasion by glass fibers during injection molding of fiber reinforced plastics raises new challenges to the wear performance of the molds. In the last few decades, a large number of PVD and CVD coatings have been developed with the aim of minimizing abrasion problems. In this work, two different coatings were tested in order to increase the wear resistance of the surface of a mold used for glass fiber reinforced plastics: TiAlSiN and CrN/CrCN/DLC. TiAlSiN was deposited as a graded monolayer coating while CrN/CrCN/DLC was a nanostructured coating consisting of three distinct layers. Both coatings were produced by PVD unbalanced magnetron sputtering and were characterized using scanning electron microscopy (SEM) provided with energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), micro hardness (MH) and scratch test analysis. Coating morphology, thickness, roughness, chemical composition and structure, hardness and adhesion to the substrate were investigated. Wear resistance was characterized through industrial tests with coated samples and an uncoated reference sample inserted in a feed channel of a plastic injection mold working with 30 wt.% glass fiber reinforced polypropylene. Results after 45,000 injection cycles indicate that the wear resistance of the mold was increased by a factor of 25 and 58, by the TiAlSiN and CrN/CrCN/DLC coatings, respectively, over the uncoated mold steel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ball rotating micro-abrasion tribometers are commonly used to carry out wear tests on thin hard coatings. In these tests, different kinds of abrasives were used, as alumina (Al2O3), silicon carbide (SiC) or diamond. In each kind of abrasive, several particle sizes can be used. Some studies were developed in order to evaluate the influence of the abrasive particle shape in the micro-abrasion process. Nevertheless, the particle size was not well correlated with the material removed amount and wear mechanisms. In this work, slurry of SiC abrasive in distilled water was used, with three different particles size. Initial surface topography was accessed by atomic force microscopy (AFM). Coating hardness measurements were performed with a micro-hardness tester. In order to evaluate the wear behaviour, a TiAlSiN thin hard film was used. The micro-abrasion tests were carried out with some different durations. The abrasive effect of the SiC particles was observed by scanning electron microscopy (SEM) both in the films (hard material) as in the substrate (soft material), after coating perforation. Wear grooves and removed material rate were compared and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The injection process of glass fibres reinforced plastics promotes the moulds surface degradation by erosion. In order to improve its wear resistance, several kinds of PVD thin hard coatings were used. It is well-known that nanostructures present a better compromise between hardness and toughness. Indeed, when the coating is constituted by a large number of ultra-thin different layers, cracks and interface troubles tend to decrease. However, it is not clear that these nanostructures present a better wear behaviour in erosion processes. In order to study its wear behaviour, a sputtered PVD nanostructured TiAlCrSiN coating was used. The substrate and film surfaces topography were analyzed by profilometry and atomic force microscopy techniques. Film adhesion to the substrate was evaluated by scratch tests. The surface hardness was measured with a Vickers micro-hardness tester. The wear resistance was evaluated by micro-abrasion with a rotating ball tribometer tests. Slurry of SiC particles in distilled water was used in order to provoke the surface abrasion. Different duration tests were performed in order to analyze the wear evolution. After these tests, the wear mechanisms developed were analyzed by scanning electron microscopy. Wear craters were measured and the wear rate was calculated and discussed. With the same purpose, coated inserts were mounted in an injection mould working with a 30% glass fibres reinforced polypropylene. After 45 000 cycles no relevant wear was registered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermally expandable particles (TEPs) are used in a wide variety of applications by industry mainly for weight reduction and appearance improvement for thermoplastics, inks, and coatings. In adhesive bonding, TEPs have been used for recycling purposes. However, TEPs might be used to modify structural adhesives for other new purposes, such as: to increase the joint strength by creating an adhesive functionally modified along the overlap of the joint by gradual heating and/or to heal the adhesive in case of damage. In this study, the behaviour of a structural polyurethane adhesive modified with TEPs was investigated as a preliminary study for further investigations on the potential of TEPs in adhesive joints. Tensile bulk tests were performed to get the tensile properties of the unmodified and TEPs-modified adhesive, while Double Cantilever Beam (DCB) test was performed in order to evaluate the resistance to mode I crack propagation of unmodified and TEPs-modified adhesive. In addition, in order to investigate the behaviour of the particles while encapsulated in adhesives, a thermal analysis was done. Scanning electron microscopy (SEM) was used to examine the fracture surface morphology of the specimens. The fracture toughness of the TEPs-modified adhesive was found to increase by addition of TEPs, while the adhesive tensile strength at yield decreased. The temperature where the particles show the maximum expansion varied with TEPs concentration, decreasing with increasing the TEPs content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to design a synthetic construct that mimics the natural bone extracellular matrix through innovative approaches based on simultaneous type I collagen electrospinning and nanophased hydroxyapatite (nanoHA) electrospraying using non-denaturating conditions and non-toxic reagents. The morphological results, assessed using scanning electron microscopy and atomic force microscopy (AFM), showed a mesh of collagen nanofibers embedded with crystals of HA with fiber diameters within the nanometer range (30 nm), thus significantly lower than those reported in the literature, over 200 nm. The mechanical properties, assessed by nanoindentation using AFM, exhibited elastic moduli between 0.3 and 2 GPa. Fourier transformed infrared spectrometry confirmed the collagenous integrity as well as the presence of nanoHA in the composite. The network architecture allows cell access to both collagen nanofibers and HA crystals as in the natural bone environment. The inclusion of nanoHA agglomerates by electrospraying in type I collagen nanofibers improved the adhesion and metabolic activity of MC3T3-E1 osteoblasts. This new nanostructured collagen–nanoHA composite holds great potential for healing bone defects or as a functional membrane for guided bone tissue regeneration and in treating bone diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A indústria dos curtumes é uma das indústrias mais antigas e tradicionais de Portugal e é também uma das mais poluentes. Esta indústria produz muitos resíduos sólidos, entre os quais, está o pelo de bovino. A valorização deste resíduo permite reduzir o impacto ambiental e aumentar a eco-eficiência da indústria dos curtumes. O pelo de bovino, rico em queratina, é um bom candidato para a produção de biofilmes. O objetivo deste trabalho foi a valorização de um resíduo de indústria de curtume (pelo de bovino) através da produção de filmes à base de queratina por termocompressão. Foi estudada a melhor formulação e as condições operatórias mais favoráveis com a finalidade de melhorar as propriedades mecânicas dos filmes. O trabalho realizado durante este projeto dividiu-se em 5 partes: preparação do material, caracterização do material, seleção do pré-tratamento, produção de filmes e caracterização dos filmes. Foram produzidos filmes para a seleção do pré-tratamento e para a respetiva caracterização. Os pré-tratamentos testados foram: tratamento com detergente, tratamento com detergente e sulfureto de sódio e, tratamento com detergente e éter de petróleo. O pré-tratamento selecionado foi o tratamento com detergente. Para a produção de filmes para a posterior caracterização, foram escolhidos 4 conjuntos de condições operatórias diferentes: 160 oC – 147 kN – 8 min – 30% glicerol; 160 oC – 147 kN – 12 min – 30% glicerol; 160 oC – 147 kN – 8 min – 40% glicerol; 160 oC – 147 kN – 12 min – 40% glicerol; identificados como Conjuntos A, B, C e D, respetivamente. Na caracterização dos filmes foram analisados vários parâmetros, nomeadamente a espessura, a permeabilidade ao vapor de água ao vapor de água, as isotérmicas de sorção, a cor, a solubilidade e as propriedades mecânicas. Também foram feitas as análises de calorimetria diferencial de varrimento (DSC) e microscopia eletrónica de varrimento (SEM). Concluiu-se que os filmes do conjunto A (160 oC – 147 kN – 8 min – 30% glicerol) tiveram um melhor desempenho apresentando espessuras médias de 0,25 0,02 mm, permeabilidade ao vapor de água ao vapor de água igual a 1,20 x 10-8 6,79 x 10-10 g/(m.s.Pa), solubilidade igual a 27,9 0,4 %, tensão de rutura média igual a 9,23 1,19 N/mm2, deformação na rutura média igual a 1,9 0,2 % e módulo de elasticidade médio igual a 554 26 N/mm2. Verificou-se um bom ajuste do modelo de GAB aos resultados experimentais. A análise DSC indicou uma temperatura de fusão aos 170 ºC para a mistura de pelo e glicerol que não se verificou nos filmes formados e indicou a temperatura de degradação do material por volta dos 240-250 ºC. A análise SEM mostrou que os filmes não estão totalmente fundidos e provou a irregularidade da superfície dos mesmos. Provou-se que é possível a produção de filmes de pelo bovino sendo ainda necessário melhorar o processo de mistura do pelo com o glicerol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a norfloxacin selective modified glassy carbon electrode (GCE) based on a molecularly imprinted polymer (MIP) as electrochemical sensor was developed. A suspension of multi-walled carbon nanotubes (MWCNTs) was deposited on the electrode surface. Subsequently, a molecularly imprinted film was prepared by electropolymerization, via cyclic voltammetry of pyrrole (PPy) in the presence of norfloxacin (NFX) as the template molecule. A control electrode (NIP) was also prepared. Scanning electron microscopy (SEM) and cyclic voltammetry in a ferrocyanide solution were performed for morphological and electrochemical characterisation, respectively. Several experimental parameters were studied and optimised. For quantification purposes the MIP/MWCNT/GCE was immersed in NFX solutions for 10 min, and the detection was performed in voltammetric cell by square wave voltammetry. The proposed sensor presented a linear behaviour, between peak current intensity and logarithmic concentration of NFX between 1 × 10−7 and 8 × 10−6 M. The obtained results presented good precision, with a repeatability of 4.3% and reproducibility of 9% and the detection limit was 4.6 × 10−8 M (S/N = 3). The developed sensor displayed good selectivity and operational lifetime, is simple to fabricate and easy to operate and was successfully applied to the analysis of NFX in urine samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the behaviour of two structural adhesives modified with thermally expandable particles (TEPs) was investigated as a preliminary study for further investigations on the potential of TEPs in adhesive joints. Tensile bulk tests were performed to get the tensile properties of the adhesives and TEPs-modified adhesives. In order to determine the expansion temperature of the particles while encapsulated in these particular adhesive systems, the variation of the volume of adhesive samples modified with different TEPs concentration as a function of temperature was measured. Further, the possibility of any chemical interactions between TEPs and adhesives matrix in the TEPs-modified specimens was verified by a Fourier transform infrared spectroscopy analysis. Finally, the fracture surfaces of the unmodified and TEPs-modified specimens, as well as the dispersion and the morphology of the particles, were examined by a scanning electron microscopy analysis. It was found that the stiffness of the TEPs-modified adhesives is not affected by incorporation of TEPs in the adhesives matrix, while the tensile yield strength decreased by increasing the wt% TEPs content. In applications of such particular materials (TEPs-modified adhesives), the temperature should be controlled to stay between 90°C and 120°C in order to obtain the highest expansion ratio. At a lower temperature, not all the particles will expand, and above, the TEPs will deteriorate and as a result the TEPs-modified adhesives will deteriorate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The opto-electronic properties of copper zinc tin sulfide can be tuned to achieve better cell efficiencies by controlled incorporation of selenium. In this paper we report the growth of Cu2ZnSn(S,Se)4 (CZTSSe) using a hybrid process involving the sequential evaporation of Zn and sputtering of the sulfide precursors of Cu and Sn, followed by a selenization step. Two approaches for selenization were followed, one using a tubular furnace and the other using a rapid thermal processor. The effects of annealing conditions on the morphological and structural properties of the films were investigated. Scanning electron microscopy and energy dispersive spectroscopy were employed to investigate the morphology and composition of the films. Structural analyses were done using X-ray diffraction (XRD) and Raman spectroscopy. Structural analyses revealed the formation of CZTSSe. This study shows that regardless of the selenization method a temperature above 450 °C is required for conversion of precursors to a compact CZTSSe layer. XRD and Raman analysis suggests that the films selenized in the tubular furnace are selenium rich whereas the samples selenized in the rapid thermal processor have higher sulfur content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until this day, the most efficient Cu(In,Ga)Se2 thin film solar cells have been prepared using a rather complex growth process often referred to as three-stage or multistage. This family of processes is mainly characterized by a first step deposited with only In, Ga and Se flux to form a first layer. Cu is added in a second step until the film becomes slightly Cu-rich, where-after the film is converted to its final Cu-poor composition by a third stage, again with no or very little addition of Cu. In this paper, a comparison between solar cells prepared with the three-stage process and a one-stage/in-line process with the same composition, thickness, and solar cell stack is made. The one-stage process is easier to be used in an industrial scale and do not have Cu-rich transitions. The samples were analyzed using glow discharge optical emission spectroscopy, scanning electron microscopy, X-ray diffraction, current–voltage-temperature, capacitance-voltage, external quantum efficiency, transmission/reflection, and photoluminescence. It was concluded that in spite of differences in the texturing, morphology and Ga gradient, the electrical performance of the two types of samples is quite similar as demonstrated by the similar J–V behavior, quantum spectral response, and the estimated recombination losses.