52 resultados para Computer based training
Resumo:
Translator’s training and assessment has used more and more tools and innovative strategies over the years. The goals and results to achieve haven’t changed much, however: translation quality. In order to accomplish it, the translator and all the tasks and processes he develops appear as crucial, being pre-translation and post-translation processes equally important as the translation itself, namely as far as autonomy, reflexive and critical skills are concerned. Finally, the need and relevance of collaborative tasks and networks amongst virtual translation communities, led us to the decision of implementing ePortfolios as a tool to develop the requested skills and extend the use of Internet in translation. In this paper we describe a case-study of a pilot experiment on the using of e-portfolios as a translation training tool and discuss their role in the definition of a clear set of objectives and phases for the completion of each task, by helping students in the management of the projects deadlines, improving their knowledge on the construction and management of translation resources and deepening their awareness about the concepts related to the development of eportfolios.
Resumo:
The dominant discourse in education and training policies, at the turn of the millennium, was on lifelong learning (LLL) in the context of a knowledge-based society. As Green points (2002, pp. 611-612) several factors contribute to this global trend: The demographic change: In most advanced countries, the average age of the population is increasing, as people live longer; The effects of globalisation: Including both economic restructuring and cultural change which have impacts on the world of education; Global economic restructuring: Which causes, for example, a more intense demand for a higher order of skills; the intensified economic competition, forcing a wave of restructuring and creating enormous pressure to train and retrain the workforce In parallel, the “significance of the international division of labour cannot be underestimated for higher education”, as pointed out by Jarvis (1999, p. 250). This author goes on to argue that globalisation has exacerbated differentiation in the labour market, with the First World converting faster to a knowledge economy and a service society, while a great deal of the actual manufacturing is done elsewhere.
Resumo:
AGM and Conference in Mechelen 27 – 30 April 2010
Resumo:
This paper presents a project consisting on the development of an Intelligent Tutoring System, for training and support concerning the development of electrical installation projects to be used by electrical engineers, technicians and students. One of the major goals of this project is to devise a teaching model based on Intelligent Tutoring techniques, considering not only academic knowledge but also other types of more empirical knowledge, able to achieve successfully the training of electrical installation design.
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.
Resumo:
The future scenarios for operation of smart grids are likely to include a large diversity of players, of different types and sizes. With control and decision making being decentralized over the network, intelligence should also be decentralized so that every player is able to play in the market environment. In the new context, aggregator players, enabling medium, small, and even micro size players to act in a competitive environment, will be very relevant. Virtual Power Players (VPP) and single players must optimize their energy resource management in order to accomplish their goals. This is relatively easy to larger players, with financial means to have access to adequate decision support tools, to support decision making concerning their optimal resource schedule. However, the smaller players have difficulties in accessing this kind of tools. So, it is required that these smaller players can be offered alternative methods to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), intended to support smaller players’ resource scheduling. The used methodology uses a training set that is built using the energy resource scheduling solutions obtained with a reference optimization methodology, a mixed-integer non-linear programming (MINLP) in this case. The trained network is able to achieve good schedule results requiring modest computational means.
Resumo:
This paper deals with the application of an intelligent tutoring approach to delivery training in diagnosis procedures of a Power System. In particular, the mechanisms implemented by the training tool to support the trainees are detailed. This tool is part of an architecture conceived to integrate Power Systems tools in a Power System Control Centre, based on an Ambient Intelligent paradigm. The present work is integrated in the CITOPSY project which main goal is to achieve a better integration between operators and control room applications, considering the needs of people, customizing requirements and forecasting behaviors.
Resumo:
The development of renewable energy sources and Distributed Generation (DG) of electricity is of main importance in the way towards a sustainable development. However, the management, in large scale, of these technologies is complicated because of the intermittency of primary resources (wind, sunshine, etc.) and small scale of some plants. The aggregation of DG plants gives place to a new concept: the Virtual Power Producer (VPP). VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets. VPPs can ensure a secure, environmentally friendly generation and optimal management of heat, electricity and cold as well as optimal operation and maintenance of electrical equipment, including the sale of electricity in the energy market. For attaining these goals, there are important issues to deal with, such as reserve management strategies, strategies for bids formulation, the producers’ remuneration, and the producers’ characterization for coalition formation. This chapter presents the most important concepts related with renewable-based generation integration in electricity markets, using VPP paradigm. The presented case studies make use of two main computer applications:ViProd and MASCEM. ViProd simulates VPP operation, including the management of plants in operation. MASCEM is a multi-agent based electricity market simulator that supports the inclusion of VPPs in the players set.
Resumo:
This paper describes an architecture conceived to integrate Power Sys-tems tools in a Power System Control Centre, based on an Ambient Intelligent (AmI) paradigm. This architecture is an instantiation of the generic architecture proposed in [1] for developing systems that interact with AmI environments. This architecture has been proposed as a consequence of a methodology for the inclu-sion of Artificial Intelligence in AmI environments (ISyRAmI - Intelligent Sys-tems Research for Ambient Intelligence). The architecture presented in the paper will be able to integrate two applications in the control room of a power system transmission network. The first is SPARSE expert system, used to get diagnosis of incidents and to support power restoration. The second application is an Intelligent Tutoring System (ITS) incorporating two training tools. The first tutoring tool is used to train operators to get the diagnosis of incidents. The second one is another tutoring tool used to train operators to perform restoration procedures.
Resumo:
The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems, Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and Intelligent User Interfaces.
Resumo:
Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.
Resumo:
Human Computer Interaction (HCl) is to interaction between computers and each person. And context-aware (CA) is very important one of HCI composition. In particular, if there are sequential or continuous tasks between users and devices, among users, and among devices etc, it is important to decide the next action using right CA. And to take perfect decision we have to get together all CA into a structure. We define that structure is Context-Aware Matrix (CAM) in this article. However to make exact decision is too hard for some problems like low accuracy, overhead and bad context by attacker etc. Many researcher has been studying to solve these problems. Moreover, still it has weak point HCI using in safety. In this Article, we propose CAM making include best selecting Server in each area. As a result, moving users could be taken the best way.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
O panorama atual da emergência e socorro de primeira linha em Portugal, carateriza-se por uma grande aposta ao longo dos últimos anos num incremento contínuo da qualidade e da eficiência que estes serviços prestam às populações locais. Com vista à prossecução do objetivo de melhoria contínua dos serviços, foram realizados ao longo dos últimos anos investimentos avultados ao nível dos recursos técnicos e ao nível da contratação e formação de recursos humanos altamente qualificados. Atualmente as instituições que prestam socorro e emergência de primeira linha estão bem dotadas ao nível físico e ao nível humano dos recursos necessários para fazerem face aos mais diversos tipos de ocorrências. Contudo, ao nível dos sistemas de informação de apoio à emergência e socorro de primeira linha, verifica-se uma inadequação (e por vezes inexistência) de sistemas informáticos capazes de suportar convenientemente o atual contexto de exigência e complexidade da emergência e socorro. Foi feita ao longo dos últimos anos, uma forte aposta na melhoria dos recursos físicos e dos recursos humanos encarregues da resposta àsemergência de primeira linha, mas descurou-se a área da gestão e análise da informação sobre as ocorrências, assim como, o delinear de possíveis estratégias de prevenção que uma análise sistematizada da informação sobre as ocorrências possibilita. Nas instituições de emergência e socorro de primeira linha em Portugal (bombeiros, proteção civil municipal, PSP, GNR, polícia municipal), prevalecem ainda hoje os sistemas informáticos apenas para o registo das ocorrências à posteriori e a total inexistência de sistemas de registo de informação e de apoio à decisão na alocação de recursos que operem em tempo real. A generalidade dos sistemas informáticos atualmente existentes nas instituições são unicamente de sistemas de backoffice, que não aproveitam a todas as potencialidades da informação operacional neles armazenada. Verificou-se também, que a geo-localização por via informática dos recursos físicos e de pontos de interesse relevantes em situações críticas é inexistente a este nível. Neste contexto, consideramos ser possível e importante alinhar o nível dos sistemas informáticos das instituições encarregues da emergência e socorro de primeira linha, com o nível dos recursos físicos e humanos que já dispõem atualmente. Dado que a emergência e socorro de primeira linha é um domínio claramente elegível para a aplicação de tecnologias provenientes dos domínios da inteligência artificial (nomeadamente sistemas periciais para apoio à decisão) e da geo-localização, decidimos no âmbito desta tese desenvolver um sistema informático capaz de colmatar muitas das lacunas por nós identificadas ao nível dos sistemas informáticos destas instituições. Pretendemos colocar as suas plataformas informáticas num nível similar ao dos seus recursos físicos e humanos. Assim, foram por nós identificadas duas áreas chave onde a implementação de sistemas informáticos adequados às reais necessidades das instituições podem ter um impacto muito proporcionar uma melhor gestão e otimização dos recursos físicos e humanos. As duas áreas chave por nós identificadas são o suporte à decisão na alocação dos recursos físicos e a geolocalização dos recursos físicos, das ocorrências e dos pontos de interesse. Procurando fornecer uma resposta válida e adequada a estas duas necessidades prementes, foi desenvolvido no âmbito desta tese o sistema CRITICAL DECISIONS. O sistema CRITICAL DECISIONS incorpora um conjunto de funcionalidades típicas de um sistema pericial, para o apoio na decisão de alocação de recursos físicos às ocorrências. A inferência automática dos recursos físicos, assenta num conjunto de regra de inferência armazenadas numa base de conhecimento, em constante crescimento e atualização, com base nas respostas bem sucedidas a ocorrências passadas. Para suprimir as carências aos nível da geo-localização dos recursos físicos, das ocorrências e dos pontos de interesse, o sistema CRITICAL DECISIONS incorpora também um conjunto de funcionalidades de geo-localização. Estas permitem a geo-localização de todos os recursos físicos da instituição, a geo-localização dos locais e as áreas das várias ocorrências, assim como, dos vários tipos de pontos de interesse. O sistema CRITICAL DECISIONS visa ainda suprimir um conjunto de outras carências por nós identificadas, ao nível da gestão documental (planos de emergência, plantas dos edifícios) , da comunicação, da partilha de informação entre as instituições de socorro e emergência locais, da contabilização dos tempos de serviço, entre outros. O sistema CRITICAL DECISIONS é o culminar de um esforço colaborativo e contínuo com várias instituições, responsáveis pela emergência e socorro de primeira linha a nível local. Esperamos com o sistema CRITICAL DECISIONS, dotar estas instituições de uma plataforma informática atual, inovadora, evolutiva, com baixos custos de implementação e de operação, capaz de proporcionar melhorias contínuas e significativas ao nível da qualidade da resposta às ocorrências, das capacidades de prevenção e de uma melhor otimização de todos os tipos de recursos que têm ao dispor.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.