78 resultados para Bio medical Applications
Resumo:
Aims: This paper aims to address some of the main possible applications of actual Nuclear Medicine Imaging techniques and methodologies in the specific context of Sports Medicine, namely in two critical systems: musculoskeletal and cardiovascular. Discussion: At the musculoskeletal level, bone scintigraphy techniques proved to be a mean of diagnosis of functional orientation and high sensibility compared with other morphological imaging techniques in the detection and temporal evaluation of pathological situations, for instance allowing the acquisition of information of great relevance in athletes with stress fractures. On the other hand, infection/inflammation studies might be of an important added value to characterize specific situations, early diagnose of potential critical issues – so giving opportunity to precise, complete and fast solutions – while allowing the evaluation and eventual optimization of training programs. At cardiovascular system level, Nuclear Medicine had proved to be crucial in differential diagnosis between cardiac hypertrophy secondary to physical activity (the so called "athlete's heart") and hypertrophic cardiomyopathy, in the diagnosis and prognosis of changes in cardiac function in athletes, as well as in direct - and non-invasive - in vivo visualization of sympathetic cardiac innervation, something that seems to take more and more importance nowadays, namely in order to try to avoid sudden death episodes at intense physical effort. Also the clinical application of Positron Emission Tomography (PET) has becoming more and more widely recognized as promising. Conclusions: It has been concluded that Nuclear Medicine can become an important application in Sports Medicine. Its well established capabilities to early detection of processes involving functional properties allied to its high sensibility and the actual technical possibilities (namely those related with hybrid imaging, that allows to add information provided by high resolution morphological imaging techniques, such as CT and/or MRI) make it a powerful diagnostic tool, claiming to be used on an each day higher range of clinical applications related with all levels of sport activities. Since the improvements at equipment characteristics and detection levels allows the use of smaller and smaller doses, so minimizing radiation exposure it is believed by the authors that the increase of the use of NM tools in the Sports Medicine area should be considered.
Resumo:
A importância da radiação ionizante na prática médica, nãoo só como diagnóstico mas também como terapia, ganhou, no último meio século, uma importância fulcral. Devido aos efeitos secundários da radiação ao ser humano, torna-se fundamental definir regras para aumentar a segurança de todos os seus utilizadores, surgindo assim a radioprotecção. Nesse sentido a Comunidade Europeia da Energia Atómica (EURATOM) define directrizes para os países membros da Comunidade Europeia de forma a poder orientá-los nesse processo. Torna-se assim importante registar e monitorizar os valores de dose de radiação num exame radiológico para o aumento de segurança dos pacientes e técnicos. O presente trabalho desenvolvido no âmbito da disciplina anual Dissertação/Projecto/ Estágio Profissional do Mestrado em Computação e Instrumentação Médica teve como objectivo registar esses valores através da comunicação com medidores de doses. A luz do dia-a-dia da Dr. Campos Costa - Consultório de Tomogra a Computarizada S.A, é apresentada nesta tese uma aplicação computacional capaz de obter os valores de dose de um estudo radiológico a um paciente e guardá-los numa base de dados projectada exclusivamente para esse fim. Os resultados obtidos são animadores uma vez que provam ser possível automatizar a monitorização desses valores através de aplicações com ferramentas capazes de auxiliar os responsáveis por essa monitorização em qualquer centro clínico.
Resumo:
The first and second authors would like to thank the support of the PhD grants with references SFRH/BD/28817/2006 and SFRH/PROTEC/49517/2009, respectively, from Fundação para a Ciência e Tecnol ogia (FCT). This work was partially done in the scope of the project “Methodologies to Analyze Organs from Complex Medical Images – Applications to Fema le Pelvic Cavity”, wi th reference PTDC/EEA- CRO/103320/2008, financially supported by FCT.
Resumo:
A nanohybrid electrochemical transducer surface was developed using carbon and gold nanomaterials. The strategy relayed on casting multiwalled carbon nanotubes or carbon nanofibers onto a screen-printed carbon electrode surface, followed by in situ generation of gold nanoparticles by electrochemical deposition of ionic gold, in a reproducible manner. These transducers, so fabricated, were characterized using both electrochemical and microscopic techniques. Biofunctionality was evaluated using the streptavidin-biotin interaction system as the biological reaction model. These platforms allow to achieve low detection limits (in the order of pmoles), are reproducible and stable at least for a month after their preparation, being a perfect candidate to be used as transducer of different sensor devices.
Resumo:
To counteract and prevent the deleterious effect of free radicals the living organisms have developed complex endogenous and exogenous antioxidant systems. Several analytical methodologies have been proposed in order to quantify antioxidants in food, beverages and biological fluids. This paper revises the electroanalytical approaches developed for the assessment of the total or individual antioxidant capacity. Four electrochemical sensing approaches have been identified, based on the direct electrochemical detection of antioxidant at bare or chemically modified electrodes, and using enzymatic and DNA-based biosensors.
Resumo:
Wireless Sensor Networks (WSNs) have been attracting increasing interests in the development of a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in Wireless Sensor Networks differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols and mechanisms. In this Technical Report, we present a survey on communication protocols for WSNs with a particular emphasis on the lower protocol layers. We give a particular focus to the MAC (Medium Access Control) sub-layer, since it has a prominent influence on some relevant requirements that must be satisfied by WSN protocols, such as energy consumption, time performance and scalability. We overview some relevant MAC protocol solutions and discuss how they tackle the trade-off between the referred requirements.
Resumo:
In this paper we present a framework for managing QoS-aware applications in a dynamic, ad-hoc, distributed environment. This framework considers an available set of wireless/mobile and fixed nodes, which may temporally form groups in order to process a set of related services, and where there is the need to support different levels of service and different combinations of quality requirements. This framework is being developed both for testing and validating an approach, based on multidimensional QoS properties, which provides service negotiation and proposal evaluation algorithms, and for assessing the suitability of the Ada language to be used in the context of dynamic, QoS-aware systems.
Resumo:
Transdermal biotechnologies are an ever increasing field of interest, due to the medical and pharmaceutical applications that they underlie. There are several mathematical models at use that permit a more inclusive vision of pure experimental data and even allow practical extrapolation for new dermal diffusion methodologies. However, they grasp a complex variety of theories and assumptions that allocate their use for specific situations. Models based on Fick's First Law found better use in contexts where scaled particle theory Models would be extensive in time-span but the reciprocal is also true, as context of transdermal diffusion of particular active compounds changes. This article reviews extensively the various theoretical methodologies for studying dermic diffusion in the rate limiting dermic barrier, the stratum corneum, and systematizes its characteristics, their proper context of application, advantages and limitations, as well as future perspectives.
Resumo:
In this paper, we analyse the ability of Profibus fieldbus to cope with the real-time requirements of a Distributed Computer Control System (DCCS), where messages associated to discrete events must be made available within a maximum bound time. Our methodology is based on the knowledge of real-time traffic characteristics, setting the network parameters in order to cope with timing requirements. Since non-real-time traffic characteristics are usually unknown at the design stage, we consider an operational profile where, constraining non-real-time traffic at the application level, we assure that realtime requirements are met.
Resumo:
WorldFIP is standardised as European Norm EN 50170 - General Purpose Field Communication System. Field communication systems (fieldbuses) started to be widely used as the communication support for distributed computer-controlled systems (DCCS), and are being used in all sorts of process control and manufacturing applications within different types of industries. There are several advantages in using fieldbuses as a replacement of for the traditional point-to-point links between sensors/actuators and computer-based control systems. Indeed they concern economical ones (cable savings) but, importantly, fieldbuses allow an increased decentralisation and distribution of the processing power over the field. Typically DCCS have real-time requirements that must be fulfilled. By this, we mean that process data must be transferred between network computing nodes within a maximum admissible time span. WorldFIP has very interesting mechanisms to schedule data transfers. It explicit distinguishes to types of traffic: periodic and aperiodic. In this paper we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis for guaranteeing the real-time requirements of both types of traffic. A major contribution is made in the analysis of worst-case response time of aperiodic transfer requests.
Resumo:
This paper describes the communication stack of the REMPLI system: a structure using power-lines and IPbased networks for communication, for data acquisition and control of energy distribution and consumption. It is furthermore prepared to use alternative communication media like GSM or analog modem connections. The REMPLI system provides communication service for existing applications, namely automated meter reading, energy billing and domotic applications. The communication stack, consisting of physical, network, transport, and application layer is described as well as the communication services provided by the system. We show how the peculiarities of the power-line communication influence the design of the communication stack, by introducing requirements to efficiently use the limited bandwidth, optimize traffic and implement fair use of the communication medium for the extensive communication partners.
Resumo:
In this paper, we present some of the fault tolerance management mechanisms being implemented in the Multi-μ architecture, namely its support for replica non-determinism. In this architecture, fault tolerance is achieved by node active replication, with software based replica management and fault tolerance transparent algorithms. A software layer implemented between the application and the real-time kernel, the Fault Tolerance Manager (FTManager), is the responsible for the transparent incorporation of the fault tolerance mechanisms The active replication model can be implemented either imposing replica determinism or keeping replica consistency at critical points, by means of interactive agreement mechanisms. One of the Multi-μ architecture goals is to identify such critical points, relieving the underlying system from performing the interactive agreement in every Ada dispatching point.
Resumo:
Real-time embedded applications require to process large amounts of data within small time windows. Parallelize and distribute workloads adaptively is suitable solution for computational demanding applications. The purpose of the Parallel Real-Time Framework for distributed adaptive embedded systems is to guarantee local and distributed processing of real-time applications. This work identifies some promising research directions for parallel/distributed real-time embedded applications.
Resumo:
This work focuses on highly dynamic distributed systems with Quality of Service (QoS) constraints (most importantly real-time constraints). To that purpose, real-time applications may benefit from code offloading techniques, so that parts of the application can be offloaded and executed, as services, by neighbour nodes, which are willing to cooperate in such computations. These applications explicitly state their QoS requirements, which are translated into resource requirements, in order to evaluate the feasibility of accepting other applications in the system.