23 resultados para BOND-VALENCE PARAMETERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2015). 4 to 6, Mar, 2015. Turku, Finland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demo presented in 12th Workshop on Models and Algorithms for Planning and Scheduling Problems (MAPSP 2015). 8 to 12, Jun, 2015. La Roche-en-Ardenne, Belgium. Extended abstract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As ligações adesivas são frequentemente utilizadas na fabricação de estruturas complexas que não poderiam ou não seriam tão fáceis de ser fabricadas numa só peça, a fim de proporcionar uma união estrutural que, teoricamente, deve ser pelo menos tão resistente como o material de base. As juntas adesivas têm vindo a substituir métodos como a soldadura, e ligações parafusadas e rebitadas, devido à facilidade de fabricação, menor custo, facilidade em unir materiais diferentes, melhor resistência, entre outras características. Os materiais compósitos reforçados com fibra de carbono são amplamente utilizados em muitas indústrias, tais como de construção de barcos, automóvel e aeronáutica, sendo usados em estruturas que requerem elevada resistência e rigidez específicas, o que reduz o peso dos componentes, mantendo a resistência e rigidez necessárias para suportar as diversas cargas aplicadas. Embora estes métodos de fabricação reduzam ao máximo as ligações através de técnicas de fabrico avançadas, estas ainda são necessárias devido ao tamanho dos componentes, limitações de projecto tecnológicas e logísticas. Em muitas estruturas, a combinação de compósitos com metais tais como alumínio ou titânio traz vantagens de projecto. Este trabalho tem como objectivo estudar, experimentalmente e por modelos de dano coesivo (MDC), juntas adesivas em L entre componentes de alumínio e compósito de carbono epóxido quando solicitados a forças de arrancamento, considerando diferentes configurações de junta e adesivos de ductilidade distinta. Os parâmetros geométricos abordados são a espessura do aderente de alumínio (tP2) e comprimento de sobreposição (LO). A análise numérica permitiu o estudo da distribuição das tensões, evolução do dano, resistência e modos de rotura. Os testes experimentais validam os resultados numéricos e fornecem mecanismos de projecto para juntas em L. Foi mostrado que a geometria do aderente em L (alumínio) e o tipo de adesivo têm uma influência directa na resistência de junta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive bonding is an excellent alternative to traditional joining techniques such as welding, mechanical fastening or riveting. However, there are many factors that have to be accounted for during joint design to accurately predict the joint strength. One of these is the adhesive layer thickness (tA). Most of the results are for epoxy structural adhesives, tailored to perform best with small values of tA, and these show that the lap joint strength decreases with increase of tA (the optimum joint strength is usually obtained with tA values between 0.1 and 0.2 mm). Recently, polyurethane adhesives were made available in the market, designed to perform with larger tA values, and whose fracture behaviour is still not studied. In this work, the effect of tA on the tensile fracture toughness (View the MathML source) of a bonded joint is studied, considering a novel high strength and ductile polyurethane adhesive for the automotive industry. This work consists on the fracture characterization of the bond by a conventional and the J-integral techniques, which accurately account for root rotation effects. An optical measurement method is used for the evaluation of crack tip opening (δn) and adherends rotation at the crack tip (θo) during the test, supported by a Matlab® sub-routine for the automated extraction of these parameters. As output of this work, fracture data is provided in traction for the selected adhesive, enabling the subsequent strength prediction of bonded joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10−2 to 10−4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qualquer estrutura hoje em dia deve ser resistente, robusta e leve, o que aumentou o interesse industrial e investigação nas ligações adesivas, nomeadamente pela melhoria das propriedades de resistência e fratura dos materiais. Com esta técnica de união, o projeto de estruturas pode ser orientado para estruturas mais leves, não só em relação à economia direta de peso relativamente às juntas aparafusas ou soldadas, mas também por causa da flexibilidade para ligar materiais diferentes. Em qualquer área da indústria, a aplicação em larga escala de uma determinada técnica de ligação supõe que estão disponíveis ferramentas confiáveis para o projeto e previsão da rotura. Neste âmbito, Modelos de Dano Coesivo (MDC) são uma ferramenta essencial, embora seja necessário estimar as leis MDC do adesivo à tração e corte para entrada nos modelos numéricos. Este trabalho avalia o valor da tenacidade ao corte (GIIC) de juntas coladas para três adesivos com ductilidade distinta. O trabalho experimental consiste na caracterização à fratura ao corte da ligação adesiva por métodos convencionais e pelo Integral-J. Além disso, pelo integral-J, é possível definir a forma exata da lei coesiva. Para o integral-J, é utilizado um método de correlação de imagem digital anteriormente desenvolvido para a avaliação do deslocamento ao corte do adesivo na extremidade da fenda (δs) durante o ensaio, acoplado a uma sub-rotina em Matlab® para a extração automática de δs. É também apresentado um trabalho numérico para avaliar a adequabilidade de leis coesivas triangulares aproximadas em reproduzir as curvas força-deslocamento (P-δ) experimentais dos ensaios ENF. Também se apresenta uma análise de sensibilidade para compreender a influência dos parâmetros coesivos nas previsões numéricas. Como resultado deste trabalho, foram estimadas experimentalmente as leis coesivas de cada adesivo pelo método direto, e numericamente validadas, para posterior previsão de resistência em juntas adesivas. Em conjunto com a caraterização à tração destes adesivos, é possível a previsão da rotura em modo-misto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the need to find an alternative way to mechanical and welding joints, and at the same time to overcome some limitations linked to these traditional techniques, adhesive bonds can be used. Adhesive bonding is a permanent joining process that uses an adhesive to bond the components of a structure. Composite materials reinforced with fibres are becoming increasingly popular in many applications as a result of a number of competitive advantages. In the manufacture of composite structures, although the fabrication techniques reduce to the minimum by means of advanced manufacturing techniques, the use of connections is still required due to the typical size limitations and design, technological and logistical aspects. Moreover, it is known that in many high performance structures, unions between composite materials with other light metals such as aluminium are required, for purposes of structural optimization. This work deals with the experimental and numerical study of single lap joints (SLJ), bonded with a brittle (Nagase Chemtex Denatite XNRH6823) and a ductile adhesive (Nagase Chemtex Denatite XNR6852). These are applied to hybrid joints between aluminium (AL6082-T651) and carbon fibre reinforced plastic (CFRP; Texipreg HS 160 RM) adherends in joints with different overlap lengths (LO) under a tensile loading. The Finite Element (FE) Method is used to perform detailed stress and damage analyses allowing to explain the joints’ behaviour and the use of cohesive zone models (CZM) enables predicting the joint strength and creating a simple and rapid design methodology. The use of numerical methods to simulate the behaviour of the joints can lead to savings of time and resources by optimizing the geometry and material parameters of the joints. The joints’ strength and failure modes were highly dependent on the adhesive, and this behaviour was successfully modelled numerically. Using a brittle adhesive resulted in a negligible maximum load (Pm) improvement with LO. The joints bonded with the ductile adhesive showed a nearly linear improvement of Pm with LO.