61 resultados para Antimicrobial substancies detection
Resumo:
Enrofloxacin (ENR) is an antimicrobial used both in humans and in food producing species. Its control is required in farmed species and their surroundings in order to reduce the prevalence of antibiotic resistant bacteria. Thus, a new biomimetic sensor enrofloxacin is presented. An artificial host was imprinted in specific polymers. These were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. The potentiometric sensors exhibited a near-Nernstian response. Slopes expressing mVΔlog([ENR]/M) varied within 48–63. The detection limits ranged from 0.28 to 1.01 µg mL 1. Sensors were independent from the pH of test solutions within 4–7. Good selectivity was observed toward potassium, calcium, barium, magnesium, glycine, ascorbic acid, creatinine, norfloxacin, ciprofloxacin, and tetracycline. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ±0.7%), fast response, good sensitivity (47 mV/Dlog([ENR]/ M), wide linear range (1.0×10-5–1.0×10-3 M), low detection limit (0.9 µg mL-1), and a stable baseline for a 5×10-2 M acetate buffer (pH 4.7) carrier. The sensors were used to analyze fish samples. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in vivo measurements of enrofloxacin or parent-drugs.
Resumo:
An electrochemical method is proposed for the determination of maltol in food. Microwave-assisted extraction procedures were developed to assist sample pre-treating steps. Experiments carried out in cyclic voltammetry showed an irreversible and adsorption controlled reduction of maltol. A cathodic peak was observed at -1.0 V for a Hanging Mercury Drop Electrode versus an AgCl/Ag (in saturated KCl), and the peak potential was pH independent. Square wave voltammetric procedures were selected to plot calibration curves. These procedures were carried out with the optimum conditions: pH 6.5; frequency 50 Hz; deposition potential 0.6 V; and deposition time 10 s. A linear behaviour was observed within 5.0 × 10-8 and 3.5 × 10-7 M. The proposed method was applied to the analysis of cakes, and results were compared with those obtained by an independent method. The voltammetric procedure was proven suitable for the analysis of cakes and provided environmental and economical advantages, including reduced toxicity and volume of effluents and decreased consumption of reagents.
Resumo:
The Quinone outside Inhibitors (QoI) are one of the most important and recent fungicide groups used in viticulture and also allowed by Integrated Pest Management. Azoxystrobin, kresoxim-methyl and trifloxystrobin are the main active ingredients for treating downy and powdery mildews that can be present in grapes and wines. In this paper, a method is reported for the analysis of these three QoI-fungicides in grapes and wine. After liquid–liquid extraction and a clean-up on commercial silica cartridges, analysis was by isocratic HPLC with diode array detection (DAD) with a run time of 13 min. Confirmation was by solid-phase micro-extraction (SPME), followed by GC/MS determination. The main validation parameters for the three compounds in grapes and wine were a limit of detection up to 0.073mg kg-1, a precision not exceeding 10.0% and an average recovery of 93% ±38.
Resumo:
Celiac disease (CD) is a gluten-induced autoimmune enteropathy characterized by the presence of antibodies against gliadin (AGA) and anti-tissue transglutaminase (anti-tTG) antibodies. A disposable electrochemical dual immunosensor for the simultaneous detection of IgA and IgG type AGA and antitTG antibodies in real patient’s samples is presented. The proposed immunosensor is based on a dual screen-printed carbon electrode, with two working electrodes, nanostructured with a carbon–metal hybrid system that worked as the transducer surface. The immunosensing strategy consisted of the immobilization of gliadin and tTG (i.e. CD specific antigens) on the nanostructured electrode surface. The electrochemical detection of the human antibodies present in the assayed serum samples was carried out through the antigen–antibody interaction and recorded using alkaline phosphatase labelled anti-human antibodies and a mixture of 3-indoxyl phosphate with silver ions was used as the substrate. The analytical signal was based on the anodic redissolution of enzymatically generated silver by cyclic voltammetry. The results obtained were corroborated with commercial ELISA kits indicating that the developed sensor can be a good alternative to the traditional methods allowing a decentralization of the analyses towards a point-of-care strategy.
Resumo:
Copper zinc tin sulfide (CZTS) is a promising Earthabundant thin-film solar cell material; it has an appropriate band gap of ~1.45 eV and a high absorption coefficient. The most efficient CZTS cells tend to be slightly Zn-rich and Cu-poor. However, growing Zn-rich CZTS films can sometimes result in phase decomposition of CZTS into ZnS and Cu2SnS3, which is generally deleterious to solar cell performance. Cubic ZnS is difficult to detect by XRD, due to a similar diffraction pattern. We hypothesize that synchrotron-based extended X-ray absorption fine structure (EXAFS), which is sensitive to local chemical environment, may be able to determine the quantity of ZnS phase in CZTS films by detecting differences in the second-nearest neighbor shell of the Zn atoms. Films of varying stoichiometries, from Zn-rich to Cu-rich (Zn-poor) were examined using the EXAFS technique. Differences in the spectra as a function of Cu/Zn ratio are detected. Linear combination analysis suggests increasing ZnS signal as the CZTS films become more Zn-rich. We demonstrate that the sensitive technique of EXAFS could be used to quantify the amount of ZnS present and provide a guide to crystal growth of highly phase pure films.
Resumo:
It has been shown that in reality at least two general scenarios of data structuring are possible: (a) a self-similar (SS) scenario when the measured data form an SS structure and (b) a quasi-periodic (QP) scenario when the repeated (strongly correlated) data form random sequences that are almost periodic with respect to each other. In the second case it becomes possible to describe their behavior and express a part of their randomness quantitatively in terms of the deterministic amplitude–frequency response belonging to the generalized Prony spectrum. This possibility allows us to re-examine the conventional concept of measurements and opens a new way for the description of a wide set of different data. In particular, it concerns different complex systems when the ‘best-fit’ model pretending to be the description of the data measured is absent but the barest necessity of description of these data in terms of the reduced number of quantitative parameters exists. The possibilities of the proposed approach and detection algorithm of the QP processes were demonstrated on actual data: spectroscopic data recorded for pure water and acoustic data for a test hole. The suggested methodology allows revising the accepted classification of different incommensurable and self-affine spatial structures and finding accurate interpretation of the generalized Prony spectroscopy that includes the Fourier spectroscopy as a partial case.
Resumo:
Recent studies of mobile Web trends show a continuous explosion of mobile-friendly content. However, the increasing number and heterogeneity of mobile devices poses several challenges for Web programmers who want to automatically get the delivery context and adapt the content to mobile devices. In this process, the devices detection phase assumes an important role where an inaccurate detection could result in a poor mobile experience for the enduser. In this paper we compare the most promising approaches for mobile device detection. Based on this study, we present an architecture for a system to detect and deliver uniform m-Learning content to students in a Higher School. We focus mainly on the devices capabilities repository manageable and accessible through an API. We detail the structure of the capabilities XML Schema that formalizes the data within the devices capabilities XML repository and the REST Web Service API for selecting the correspondent devices capabilities data according to a specific request. Finally, we validate our approach by presenting the access and usage statistics of the mobile web interface of the proposed system such as hits and new visitors, mobile platforms, average time on site and rejection rate.
Resumo:
Recent studies of mobile Web trends show the continued explosion of mobile-friend content. However, the wide number and heterogeneity of mobile devices poses several challenges for Web programmers, who want automatic delivery of context and adaptation of the content to mobile devices. Hence, the device detection phase assumes an important role in this process. In this chapter, the authors compare the most used approaches for mobile device detection. Based on this study, they present an architecture for detecting and delivering uniform m-Learning content to students in a Higher School. The authors focus mainly on the XML device capabilities repository and on the REST API Web Service for dealing with device data. In the former, the authors detail the respective capabilities schema and present a new caching approach. In the latter, they present an extension of the current API for dealing with it. Finally, the authors validate their approach by presenting the overall data and statistics collected through the Google Analytics service, in order to better understand the adherence to the mobile Web interface, its evolution over time, and the main weaknesses.
Resumo:
A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.
Resumo:
O leite é um alimento complexo, pela sua composição rico em água, proteínas, lípidos, vitaminas e minerais. Devido ao seu alto valor nutricional é fundamental para a amamentação de crianças e animais em crescimento, pois fornece componentes fundamentais para o desenvolvimento e manutenção da saúde. Os antimicrobianos são amplamente utilizados como uma medida terapêutica no tratamento de infeções bacterianas, profilaxia e como promotores de crescimento (aditivos). A presença de resíduos de antimicrobianos no leite pode representar riscos para a saúde humana, como reações alérgicas em indivíduos hipersensíveis e resistências. Os objetivos deste estudo são o desenvolvimento de novos métodos de limpeza e de pré-concentração para amostras de leite, por meio de extração em fase sólida (SPE), com a finalidade de realizar uma melhor identificação e quantificação de antimicrobiana por Cromatografia Líquida de Alta Performance (HPLC). Todos os métodos desenvolvidos são de fácil execução, com taxas de recuperação dos agentes antimicrobianos viáveis, com uma percentagem de recuperação a partir de 85%. O método cromatográfico utilizado para a deteção e quantificação (HPLC-DAD) têm os limites de deteção (LD) entre 2.43ng / mL e 1.62ng / mL e os limites de quantificação (LQ) entre 7,36 ng / mL e 4.92 ng / mL, o que significa este método vai de encontro às diretrizes estipuladas pela União Europeia para os agentes antimicrobianos estudados. A combinação dos métodos propostos de limpeza e pré-concentração por SPE e multirresíduo por HPLC-DAD permite, por conseguinte, a deteção e quantificação de resíduos de antibióticos no leite, tornando esta uma alternativa importante e útil no processo de controlo de qualidade para a indústria de alimentos e outras área.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.
Resumo:
O leite é um alimento complexo, pela sua composição rico em água, proteínas, lípidos, vitaminas e minerais. Devido ao seu alto valor nutricional é fundamental para a amamentação de crianças e animais em crescimento, pois fornece componentes fundamentais para o desenvolvimento e manutenção da saúde. Os antimicrobianos são amplamente utilizados como uma medida terapêutica no tratamento de infeções bacterianas, profilaxia e como promotores de crescimento (aditivos). A presença de resíduos de antimicrobianos no leite pode representar riscos para a saúde humana, como reações alérgicas em indivíduos hipersensíveis e resistências. Os objetivos deste estudo são o desenvolvimento de novos métodos de limpeza e de pré- concentração para amostras de leite, por meio de extração em fase sólida (SPE), com a finalidade de realizar uma melhor identificação e quantificação de antimicrobiana por Cromatografia Líquida de Alta Performance (HPLC). Todos os métodos desenvolvidos são de fácil execução, com taxas de recuperação dos agentes antimicrobianos viáveis, com uma percentagem de recuperação a partir de 85%. O método cromatográfico utilizado para a deteção e quantificação (HPLC-DAD) têm os limites de deteção (LD) entre 2.43ng / mL e 1.62ng / mL e os limites de quantificação (LQ) entre 7,36 ng / mL e 4.92 ng / mL, o que significa este método vai de encontro às diretrizes estipuladas pela União Europeia para os agentes antimicrobianos estudados. A combinação dos métodos propostos de limpeza e pré-concentração por SPE e multirresíduo por HPLC-DAD permite, por conseguinte, a deteção e quantificação de resíduos de antibióticos no leite, tornando esta uma alternativa importante e útil no processo de controlo de qualidade para a indústria de alimentos e outras área.
Resumo:
In recent years, vehicular cloud computing (VCC) has emerged as a new technology which is being used in wide range of applications in the area of multimedia-based healthcare applications. In VCC, vehicles act as the intelligent machines which can be used to collect and transfer the healthcare data to the local, or global sites for storage, and computation purposes, as vehicles are having comparatively limited storage and computation power for handling the multimedia files. However, due to the dynamic changes in topology, and lack of centralized monitoring points, this information can be altered, or misused. These security breaches can result in disastrous consequences such as-loss of life or financial frauds. Therefore, to address these issues, a learning automata-assisted distributive intrusion detection system is designed based on clustering. Although there exist a number of applications where the proposed scheme can be applied but, we have taken multimedia-based healthcare application for illustration of the proposed scheme. In the proposed scheme, learning automata (LA) are assumed to be stationed on the vehicles which take clustering decisions intelligently and select one of the members of the group as a cluster-head. The cluster-heads then assist in efficient storage and dissemination of information through a cloud-based infrastructure. To secure the proposed scheme from malicious activities, standard cryptographic technique is used in which the auotmaton learns from the environment and takes adaptive decisions for identification of any malicious activity in the network. A reward and penalty is given by the stochastic environment where an automaton performs its actions so that it updates its action probability vector after getting the reinforcement signal from the environment. The proposed scheme was evaluated using extensive simulations on ns-2 with SUMO. The results obtained indicate that the proposed scheme yields an improvement of 10 % in detection rate of malicious nodes when compared with the existing schemes.
Resumo:
IEEE 802.11 is one of the most well-established and widely used standard for wireless LAN. Its Medium Access control (MAC) layer assumes that the devices adhere to the standard’s rules and timers to assure fair access and sharing of the medium. However, wireless cards driver flexibility and configurability make it possible for selfish misbehaving nodes to take advantages over the other well-behaving nodes. The existence of selfish nodes degrades the QoS for the other devices in the network and may increase their energy consumption. In this paper we propose a green solution for selfish misbehavior detection in IEEE 802.11-based wireless networks. The proposed scheme works in two phases: Global phase which detects whether the network contains selfish nodes or not, and Local phase which identifies which node or nodes within the network are selfish. Usually, the network must be frequently examined for selfish nodes during its operation since any node may act selfishly. Our solution is green in the sense that it saves the network resources as it avoids wasting the nodes energy by examining all the individual nodes of being selfish when it is not necessary. The proposed detection algorithm is evaluated using extensive OPNET simulations. The results show that the Global network metric clearly indicates the existence of a selfish node while the Local nodes metric successfully identified the selfish node(s). We also provide mathematical analysis for the selfish misbehaving and derived formulas for the successful channel access probability.
Resumo:
The wide use of antibiotics in aquaculture has led to the emergence of resistant microbial species. It should be avoided/minimized by controlling the amount of drug employed in fish farming. For this purpose, the present work proposes test-strip papers aiming at the detection/semi-quantitative determination of organic drugs by visual comparison of color changes, in a similar analytical procedure to that of pH monitoring by universal pH paper. This is done by establishing suitable chemical changes upon cellulose, attributing the paper the ability to react with the organic drug and to produce a color change. Quantitative data is also enabled by taking a picture and applying a suitable mathematical treatment to the color coordinates given by the HSL system used by windows. As proof of concept, this approach was applied to oxytetracycline (OXY), one of the antibiotics frequently used in aquaculture. A bottom-up modification of paper was established, starting by the reaction of the glucose moieties on the paper with 3-triethoxysilylpropylamine (APTES). The so-formed amine layer allowed binding to a metal ion by coordination chemistry, while the metal ion reacted after with the drug to produce a colored compound. The most suitable metals to carry out such modification were selected by bulk studies, and the several stages of the paper modification were optimized to produce an intense color change against the concentration of the drug. The paper strips were applied to the analysis of spiked environmental water, allowing a quantitative determination for OXY concentrations as low as 30 ng/mL. In general, this work provided a simple, method to screen and discriminate tetracycline drugs, in aquaculture, being a promising tool for local, quick and cheap monitoring of drugs.