381 resultados para IEEE 830
Resumo:
Componentised systems, in particular those with fault confinement through address spaces, are currently emerging as a hot topic in embedded systems research. This paper extends the unified rate-based scheduling framework RBED in several dimensions to fit the requirements of such systems: we have removed the requirement that the deadline of a task is equal to its period. The introduction of inter-process communication reflects the need to communicate. Additionally we also discuss server tasks, budget replenishment and the low level details needed to deal with the physical reality of systems. While a number of these issues have been studied in previous work in isolation, we focus on the problems discovered and lessons learned when integrating solutions. We report on our experiences implementing the proposed mechanisms in a commercial grade OKL4 microkernel as well as an application with soft real-time and best-effort tasks on top of it.
Resumo:
Wireless sensor networks (WSNs) emerge as underlying infrastructures for new classes of large-scale networked embedded systems. However, WSNs system designers must fulfill the quality-of-service (QoS) requirements imposed by the applications (and users). Very harsh and dynamic physical environments and extremely limited energy/computing/memory/communication node resources are major obstacles for satisfying QoS metrics such as reliability, timeliness, and system lifetime. The limited communication range of WSN nodes, link asymmetry, and the characteristics of the physical environment lead to a major source of QoS degradation in WSNs-the ldquohidden node problem.rdquo In wireless contention-based medium access control (MAC) protocols, when two nodes that are not visible to each other transmit to a third node that is visible to the former, there will be a collision-called hidden-node or blind collision. This problem greatly impacts network throughput, energy-efficiency and message transfer delays, and the problem dramatically increases with the number of nodes. This paper proposes H-NAMe, a very simple yet extremely efficient hidden-node avoidance mechanism for WSNs. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes that scales to multiple clusters via a cluster grouping strategy that guarantees no interference between overlapping clusters. Importantly, H-NAMe is instantiated in IEEE 802.15.4/ZigBee, which currently are the most widespread communication technologies for WSNs, with only minor add-ons and ensuring backward compatibility with their protocols standards. H-NAMe was implemented and exhaustively tested using an experimental test-bed based on ldquooff-the-shelfrdquo technology, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. H-NAMe effectiveness was also demonstrated in a target tracking application with mobile robots - over a WSN deployment.
Resumo:
Modeling the fundamental performance limits of Wireless Sensor Networks (WSNs) is of paramount importance to understand their behavior under the worst-case conditions and to make the appropriate design choices. This is particular relevant for time-sensitive WSN applications, where the timing behavior of the network protocols (message transmission must respect deadlines) impacts on the correct operation of these applications. In that direction this paper contributes with a methodology based on Network Calculus, which enables quick and efficient worst-case dimensioning of static or even dynamically changing cluster-tree WSNs where the data sink can either be static or mobile. We propose closed-form recurrent expressions for computing the worst-case end-to-end delays, buffering and bandwidth requirements across any source-destination path in a cluster-tree WSN. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs. Finally, we demonstrate the validity and analyze the accuracy of our methodology through a comprehensive experimental study using commercially available technology, namely TelosB motes running TinyOS.
Resumo:
ARINC specification 653-2 describes the interface between application software and underlying middleware in a distributed real-time avionics system. The real-time workload in this system comprises of partitions, where each partition consists of one or more processes. Processes incur blocking and preemption overheads and can communicate with other processes in the system. In this work we develop compositional techniques for automated scheduling of such partitions and processes. At present, system designers manually schedule partitions based on interactions they have with the partition vendors. This approach is not only time consuming, but can also result in under utilization of resources. In contrast, the technique proposed in this paper is a principled approach for scheduling ARINC-653 partitions and therefore should facilitate system integration.
Resumo:
Consider the problem of designing an algorithm with a high utilisation bound for scheduling sporadic tasks with implicit deadlines on identical processors. A task is characterised by its minimum interarrival time and its execution time. Task preemption and migration is permitted. Still, low preemption and migration counts are desirable. We formulate an algorithm with a utilisation bound no less than 66.¯6%, characterised by worst-case preemption counts comparing favorably against the state-of-the-art.
Resumo:
This paper proposes an one-step decentralised coordination model based on an effective feedback mechanism to reduce the complexity of the needed interactions among interdependent nodes of a cooperative distributed system until a collective adaptation behaviour is determined. Positive feedback is used to reinforce the selection of the new desired global service solution, while negative feedback discourages nodes to act in a greedy fashion as this adversely impacts on the provided service levels at neighbouring nodes. The reduced complexity and overhead of the proposed decentralised coordination model are validated through extensive evaluations.
Resumo:
WiDom is a previously proposed prioritized medium access control protocol for wireless channels. We present a modification to this protocol in order to improve its reliability. This modification has similarities with cooperative relaying schemes, but, in our protocol, all nodes can relay a carrier wave. The preliminary evaluation shows that, under transmission errors, a significant reduction on the number of failed tournaments can be achieved.
Resumo:
We focus on large-scale and dense deeply embedded systems where, due to the large amount of information generated by all nodes, even simple aggregate computations such as the minimum value (MIN) of the sensor readings become notoriously expensive to obtain. Recent research has exploited a dominance-based medium access control(MAC) protocol, the CAN bus, for computing aggregated quantities in wired systems. For example, MIN can be computed efficiently and an interpolation function which approximates sensor data in an area can be obtained efficiently as well. Dominance-based MAC protocols have recently been proposed for wireless channels and these protocols can be expected to be used for achieving highly scalable aggregate computations in wireless systems. But no experimental demonstration is currently available in the research literature. In this paper, we demonstrate that highly scalable aggregate computations in wireless networks are possible. We do so by (i) building a new wireless hardware platform with appropriate characteristics for making dominance-based MAC protocols efficient, (ii) implementing dominance-based MAC protocols on this platform, (iii) implementing distributed algorithms for aggregate computations (MIN, MAX, Interpolation) using the new implementation of the dominance-based MAC protocol and (iv) performing experiments to prove that such highly scalable aggregate computations in wireless networks are possible.
Resumo:
Modeling the fundamental performance limits of Wireless Sensor Networks (WSNs) is of paramount importance to understand their behavior under worst-case conditions and to make the appropriate design choices. In that direction this paper contributes with an analytical methodology for modeling cluster-tree WSNs where the data sink can either be static or mobile. We assess the validity and pessimism of analytical model by comparing the worst-case results with the values measured through an experimental test-bed based on Commercial-Off- The-Shelf (COTS) technologies, namely TelosB motes running TinyOS.
Resumo:
Hexagonal wireless sensor network refers to a network topology where a subset of nodes have six peer neighbors. These nodes form a backbone for multi-hop communications. In a previous work, we proposed the use of hexagonal topology in wireless sensor networks and discussed its properties in relation to real-time (bounded latency) multi-hop communications in large-scale deployments. In that work, we did not consider the problem of hexagonal topology formation in practice - which is the subject of this research. In this paper, we present a decentralized algorithm that forms the hexagonal topology backbone in an arbitrary but sufficiently dense network deployment. We implemented a prototype of our algorithm in NesC for TinyOS based platforms. We present data from field tests of our implementation, collected using a deployment of fifty wireless sensor nodes.
Resumo:
Database query languages on relations (for example SQL) make it possible to join two relations. This operation is very common in desktop/server database systems but unfortunately query processing systems in networked embedded computer systems currently do not support this operation; specifically, the query processing systems TAG, TinyDB, Cougar do not support this. We show how a prioritized medium access control (MAC) protocol can be used to efficiently execute the database operation join for networked embedded computer systems where all computer nodes are in a single broadcast domain.
Resumo:
Mobile applications are becoming increasingly more complex and making heavier demands on local system resources. Moreover, mobile systems are nowadays more open, allowing users to add more and more applications, including third-party developed ones. In this perspective, it is increasingly expected that users will want to execute in their devices applications which supersede currently available resources. It is therefore important to provide frameworks which allow applications to benefit from resources available on other nodes, capable of migrating some or all of its services to other nodes, depending on the user needs. These requirements are even more stringent when users want to execute Quality of Service (QoS) aware applications, such as voice or video. The required resources to guarantee the QoS levels demanded by an application can vary with time, and consequently, applications should be able to reconfigure themselves. This paper proposes a QoS-aware service-based framework able to support distributed, migration-capable, QoS-enabled applications on top of the Android Operating system.
Resumo:
Synchronization is a challenging and important issue for time-sensitive Wireless Sensor Networks (WSN) since it requires a mutual spatiotemporal coordination between the nodes. In that concern, the IEEE 802.15.4/ZigBee protocols embody promising technologies for WSNs, but are still ambiguous on how to efficiently build synchronized multiple-cluster networks, specifically for the case of cluster-tree topologies. In fact, the current IEEE 802.15.4/ZigBee specifications restrict the synchronization to beacon-enabled (by the generation of periodic beacon frames) star networks, while they support multi-hop networking in mesh topologies, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this issue by unveiling the ambiguities regarding the use of the cluster-tree topology and proposing a synchronization mechanism based on Time Division Beacon Scheduling (TDBS) to build cluster-tree WSNs. In addition, we propose a methodology for efficiently managing duty-cycles in every cluster, ensuring the fairest use of bandwidth resources. The feasibility of the TDBS mechanism is clearly demonstrated through an experimental test-bed based on our open-source implementation of the IEEE 802.15.4/ZigBee protocols.
Resumo:
LLF (Least Laxity First) scheduling, which assigns a higher priority to a task with smaller laxity, has been known as an optimal preemptive scheduling algorithm on a single processor platform. However, its characteristics upon multiprocessor platforms have been little studied until now. Orthogonally, it has remained open how to efficiently schedule general task systems, including constrained deadline task systems, upon multiprocessors. Recent studies have introduced zero laxity (ZL) policy, which assigns a higher priority to a task with zero laxity, as a promising scheduling approach for such systems (e.g., EDZL). Towards understanding the importance of laxity in multiprocessor scheduling, this paper investigates the characteristics of ZL policy and presents the first ZL schedulability test for any work-conserving scheduling algorithm that employs this policy. It then investigates the characteristics of LLF scheduling, which also employs the ZL policy, and derives the first LLF-specific schedulability test on multiprocessors. It is shown that the proposed LLF test dominates the ZL test as well as the state-of-art EDZL test.
Resumo:
Distributed real-time systems, such as factory automation systems, require that computer nodes communicate with a known and low bound on the communication delay. This can be achieved with traditional time division multiple access (TDMA). But improved flexibility and simpler upgrades are possible through the use of TDMA with slot-skipping (TDMA/SS), meaning that a slot is skipped whenever it is not used and consequently the slot after the skipped slot starts earlier. We propose a schedulability analysis for TDMA/SS. We assume knowledge of all message streams in the system, and that each node schedules messages in its output queue according to deadline monotonic. Firstly, we present a non-exact (but fast) analysis and then, at the cost of computation time, we also present an algorithm that computes exact queuing times.