240 resultados para Scheduling, heuristic algorithms, blocking flow shop


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, it is studied the dynamics of the robotic bird in terms of time response and robustness. It is analyzed the wing angle of attack and the velocity of the bird, the tail influence, the gliding flight and the flapping flight. The results are positive for the construction of flying robots. The development of computational simulation based on the dynamic of the robotic bird should allow testing strategies and different algorithms of control such as integer and fractional controllers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms are needed. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. The results are compared with a genetic algorithm that adopts the direct kinematics. In both cases the trajectory planning is formulated as an optimization problem with constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we describe several methods for the discretization of the differintegral operator sa, where α = u + jv is a complex value. The concept of the conjugated-order differintegral is also introduced, which enables the use of complex-order differintegrals while still producing real-valued time responses and transfer functions. The performance of the resulting approximations is analysed in both the time and frequency domains. Several results are presented that demonstrate its utility in control system design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of fractional-order controllers is currently one of the most promising fields of research. However, most of the work in this area addresses the case of linear systems. This paper reports on the analysis of fractional-order control of nonlinear systems. The performance of discrete fractional-order PID controllers in the presence of several nonlinearities is discussed. Some results are provided that indicate the superior robustness of such algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the new package entitled Simulator of Intelligent Transportation Systems (SITS) and a computational oriented analysis of traffic dynamics. The SITS adopts a microscopic simulation approach to reproduce real traffic conditions considering different types of vehicles, drivers and roads. A set of experiments with the SITS reveal the dynamic phenomena exhibited by this kind of system. For this purpose a modelling formalism is developed that embeds the statistics and the Laplace transform. The results make possible the adoption of classical system theory tools and point out that it is possible to study traffic systems taking advantage of the knowledge gathered with automatic control algorithms. A complementary perspective for the analysis of the traffic flow is also quantified through the entropy measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O problema do escalonamento, por ser um dos factores fundamentais na tomada de decisão para uma boa gestão das operações, tem sido alvo de um amplo estudo, tanto na sua componente teórica como na sua componente prática. A importância de um escalonamento correto das operações é preponderante, quando as pequenas diferenças, em termos de tempos de produção, podem ter um grande impacto na competitividade da organização. Em muitas unidades produtivas, existem máquinas capazes de realizar as mesmas operações com diferentes desempenhos. Isto pode dever-se à necessidade de flexibilizar os recursos ou mesmo a uma atualização da capacidade produtiva. Embora os problemas de máquinas diferentes em paralelo tenham sido alvo de um vasto estudo, muitos deles não são passíveis de ser resolvidos através de métodos exatos. O problema de minimização do makespan (Rm||Cmax), é NP-hard, sendo habitualmente abordado através de heurísticas. Entre as heurísticas utilizadas em problemas de minimização do makespan em máquinas diferentes em paralelo, é possível identificar duas filosofias de afectação: a que utiliza os tempos de processamento para alocar as tarefas e a que utiliza as datas de conclusão. Nesta dissertação, pretende-se dar uma contribuição para a resolução do problema de afectação de recursos em sistemas de produção. Para tal, foram propostas as heurísticas OMTC 3 e Suffrage One. A contribuição consiste na proposta de versões híbridas e modificadas das heurística MCT e Suffrage, uma vez identificadas várias características que podem limitar o seu desempenho, como o facto da heurística MCT alocar as tarefas numa ordem aleatória ou a heurística Suffrage alocar mais que uma tarefa por iteração. Finalmente, procedeu-se à realização de testes computacionais, para avaliar o desempenho das heurísticas propostas. Os testes realizados permitiram concluir que a heurística OMTC 3 apresentou um melhor desempenho que a heurística MCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empowered by virtualisation technology, cloud infrastructures enable the construction of flexi- ble and elastic computing environments, providing an opportunity for energy and resource cost optimisation while enhancing system availability and achieving high performance. A crucial re- quirement for effective consolidation is the ability to efficiently utilise system resources for high- availability computing and energy-efficiency optimisation to reduce operational costs and carbon footprints in the environment. Additionally, failures in highly networked computing systems can negatively impact system performance substantially, prohibiting the system from achieving its initial objectives. In this paper, we propose algorithms to dynamically construct and readjust vir- tual clusters to enable the execution of users’ jobs. Allied with an energy optimising mechanism to detect and mitigate energy inefficiencies, our decision-making algorithms leverage virtuali- sation tools to provide proactive fault-tolerance and energy-efficiency to virtual clusters. We conducted simulations by injecting random synthetic jobs and jobs using the latest version of the Google cloud tracelogs. The results indicate that our strategy improves the work per Joule ratio by approximately 12.9% and the working efficiency by almost 15.9% compared with other state-of-the-art algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pultrusion is an industrial process used to produce glass fibers reinforced polymers profiles. These materials are worldwide used when performing characteristics, such as great electrical and magnetic insulation, high strength to weight ratio, corrosion and weather resistance, long service life and minimal maintenance are required. In this study, we present the results of the modelling and simulation of heat flow through a pultrusion die by means of Finite Element Analysis (FEA). The numerical simulation was calibrated based on temperature profiles computed from thermographic measurements carried out during pultrusion manufacturing process. Obtained results have shown a maximum deviation of 7%, which is considered to be acceptable for this type of analysis, and is below to the 10% value, previously specified as maximum deviation. © 2011, Advanced Engineering Solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current Manufacturing Systems challenges due to international economic crisis, market globalization and e-business trends, incites the development of intelligent systems to support decision making, which allows managers to concentrate on high-level tasks management while improving decision response and effectiveness towards manufacturing agility. This paper presents a novel negotiation mechanism for dynamic scheduling based on social and collective intelligence. Under the proposed negotiation mechanism, agents must interact and collaborate in order to improve the global schedule. Swarm Intelligence (SI) is considered a general aggregation term for several computational techniques, which use ideas and inspiration from the social behaviors of insects and other biological systems. This work is primarily concerned with negotiation, where multiple self-interested agents can reach agreement over the exchange of operations on competitive resources. Experimental analysis was performed in order to validate the influence of negotiation mechanism in the system performance and the SI technique. Empirical results and statistical evidence illustrate that the negotiation mechanism influence significantly the overall system performance and the effectiveness of Artificial Bee Colony for makespan minimization and on the machine occupation maximization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hard real- time multiprocessor scheduling has seen, in recent years, the flourishing of semi-partitioned scheduling algorithms. This category of scheduling schemes combines elements of partitioned and global scheduling for the purposes of achieving efficient utilization of the system’s processing resources with strong schedulability guarantees and with low dispatching overheads. The sub-class of slot-based “task-splitting” scheduling algorithms, in particular, offers very good trade-offs between schedulability guarantees (in the form of high utilization bounds) and the number of preemptions/migrations involved. However, so far there did not exist unified scheduling theory for such algorithms; each one was formulated in its own accompanying analysis. This article changes this fragmented landscape by formulating a more unified schedulability theory covering the two state-of-the-art slot-based semi-partitioned algorithms, S-EKG and NPS-F (both fixed job-priority based). This new theory is based on exact schedulability tests, thus also overcoming many sources of pessimism in existing analysis. In turn, since schedulability testing guides the task assignment under the schemes in consideration, we also formulate an improved task assignment procedure. As the other main contribution of this article, and as a response to the fact that many unrealistic assumptions, present in the original theory, tend to undermine the theoretical potential of such scheduling schemes, we identified and modelled into the new analysis all overheads incurred by the algorithms in consideration. The outcome is a new overhead-aware schedulability analysis that permits increased efficiency and reliability. The merits of this new theory are evaluated by an extensive set of experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to enable these networks with the ability to self-adapt their clusters’ duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a new algorithm, LPC (task assignment based on solving a Linear Program with Cutting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform in which each processor is 1.5 × faster and has three additional processors. For systems with a large number of processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time task assignment algorithm using cutting planes.