186 resultados para Virtual power
Resumo:
This paper describes the methodology adopted to assess local air quality impact in the vicinity of a coal power plant located in the south of Portugal. Two sampling areas were selected to assess the deposition flux of dust fallout and its potential spatial heterogeneity. The sampling area was divided into two subareas: the inner, with higher sampling density and urban and suburban characteristics, inside a 6-km circle centered on the stacks, and an outer subarea, mainly rural, with lower sampling density within a radius of 20 km. Particulate matter deposition was studied in the vicinity of the coal fired power plant during three seasonal sampling campaigns. For the first one, the average annual flux of dust fallout was 22.51 g/(m2 yr), ranging from 4.20 to 65.94 g/(m2 yr); for the second one was 9.47 g/(m2 yr), ranging from 0.78 to 32.72 g/(m2 yr) and for the last one was 38.42 g/(m2 yr), ranging from 1.41 to 117.48 g/(m2 yr). The fallout during the second campaign turned out to be much lower than for others. This was in part due to meteorological local patterns but mostly due to the fact that the power plant was not working at full power during the second sampling campaign.155
Resumo:
With the emergence of low-power wireless hardware new ways of communication were needed. In order to standardize the communication between these low powered devices the Internet Engineering Task Force (IETF) released the 6LoWPAN stand- ard that acts as an additional layer for making the IPv6 link layer suitable for the lower-power and lossy networks. In the same way, IPv6 Routing Protocol for Low- Power and Lossy Networks (RPL) has been proposed by the IETF Routing Over Low power and Lossy networks (ROLL) Working Group as a standard routing protocol for IPv6 routing in low-power wireless sensor networks. The research performed in this thesis uses these technologies to implement a mobility process. Mobility management is a fundamental yet challenging area in low-power wireless networks. There are applications that require mobile nodes to exchange data with a xed infrastructure with quality-of-service guarantees. A prime example of these applications is the monitoring of patients in real-time. In these scenarios, broadcast- ing data to all access points (APs) within range may not be a valid option due to the energy consumption, data storage and complexity requirements. An alternative and e cient option is to allow mobile nodes to perform hand-o s. Hand-o mechanisms have been well studied in cellular and ad-hoc networks. However, low-power wireless networks pose a new set of challenges. On one hand, simpler radios and constrained resources ask for simpler hand-o schemes. On the other hand, the shorter coverage and higher variability of low-power links require a careful tuning of the hand-o parameters. In this work, we tackle the problem of integrating smart-HOP within a standard protocol, speci cally RPL. The simulation results in Cooja indicate that the pro- posed scheme minimizes the hand-o delay and the total network overhead. The standard RPL protocol is simply unable to provide a reliable mobility support sim- ilar to other COTS technologies. Instead, they support joining and leaving of nodes, with very low responsiveness in the existence of physical mobility.
Resumo:
Smart grids with an intensive penetration of distributed energy resources will play an important role in future power system scenarios. The intermittent nature of renewable energy sources brings new challenges, requiring an efficient management of those sources. Additional storage resources can be beneficially used to address this problem; the massive use of electric vehicles, particularly of vehicle-to-grid (usually referred as gridable vehicles or V2G), becomes a very relevant issue. This paper addresses the impact of Electric Vehicles (EVs) in system operation costs and in power demand curve for a distribution network with large penetration of Distributed Generation (DG) units. An efficient management methodology for EVs charging and discharging is proposed, considering a multi-objective optimization problem. The main goals of the proposed methodology are: to minimize the system operation costs and to minimize the difference between the minimum and maximum system demand (leveling the power demand curve). The proposed methodology perform the day-ahead scheduling of distributed energy resources in a distribution network with high penetration of DG and a large number of electric vehicles. It is used a 32-bus distribution network in the case study section considering different scenarios of EVs penetration to analyze their impact in the network and in the other energy resources management.
Resumo:
In future power systems, in the smart grid and microgrids operation paradigms, consumers can be seen as an energy resource with decentralized and autonomous decisions in the energy management. It is expected that each consumer will manage not only the loads, but also small generation units, heating systems, storage systems, and electric vehicles. Each consumer can participate in different demand response events promoted by system operators or aggregation entities. This paper proposes an innovative method to manage the appliances on a house during a demand response event. The main contribution of this work is to include time constraints in resources management, and the context evaluation in order to ensure the required comfort levels. The dynamic resources management methodology allows a better resources’ management in a demand response event, mainly the ones of long duration, by changing the priorities of loads during the event. A case study with two scenarios is presented considering a demand response with 30 min duration, and another with 240 min (4 h). In both simulations, the demand response event proposes the power consumption reduction during the event. A total of 18 loads are used, including real and virtual ones, controlled by the presented house management system.
Resumo:
Power law (PL) distributions have been largely reported in the modeling of distinct real phenomena and have been associated with fractal structures and self-similar systems. In this paper, we analyze real data that follows a PL and a double PL behavior and verify the relation between the PL coefficient and the capacity dimension of known fractals. It is to be proved a method that translates PLs coefficients into capacity dimension of fractals of any real data.
Resumo:
Coal contains trace elements and naturally occurring radionuclides such as 40K, 232Th, 238U. When coal is burned, minerals, including most of the radionuclides, do not burn and concentrate in the ash several times in comparison with their content in coal. Usually, a small fraction of the fly ash produced (2-5%) is released into the atmosphere. The activities released depend on many factors (concentration in coal, ash content and inorganic matter of the coal, combustion temperature, ratio between bottom and fly ash, filtering system). Therefore, marked differences should be expected between the by-products produced and the amount of activity discharged (per unit of energy produced) from different coal-fired power plants. In fact, the effects of these releases on the environment due to ground deposition have been received some attention but the results from these studies are not unanimous and cannot be understood as a generic conclusion for all coal-fired power plants. In this study, the dispersion modelling of natural radionuclides was carried out to assess the impact of continuous atmospheric releases from a selected coal plant. The natural radioactivity of the coal and the fly ash were measured and the dispersion was modelled by a Gaussian plume estimating the activity concentration at different heights up to a distance of 20 km in several wind directions. External and internal doses (inhalation and ingestion) and the resulting risk were calculated for the population living within 20 km from the coal plant. In average, the effective dose is lower than the ICRP’s limit and the risk is lower than the U.S. EPA’s limit. Therefore, in this situation, the considered exposure does not pose any risk. However, when considering the dispersion in the prevailing wind direction, these values are significant due to an increase of 232Th and 226Ra concentrations in 75% and 44%, respectively.
Resumo:
Gamma radiations measurements were carried out in the vicinity of a coal-fired power plant located in the southwest coastline of Portugal. Two different gamma detectors were used to assess the environmental radiation within a circular area of 20 km centred in the coal plant: a scintillometer (SPP2 NF, Saphymo) and a high purity germanium detector (HPGe, Canberra). Fifty urban and suburban measurements locations were established within the defined area and two measurements campaigns were carried out. The results of the total gamma radiation ranged from 20.83 to 98.33 counts per second (c.p.s.) for both measurement campaigns and outdoor doses rates ranged from 77.65 to 366.51 Gy/h. Natural emitting nuclides from the U-238 and Th-232 decay series were identified as well as the natural emitting nuclide K-40. The radionuclide concentration from the uranium and thorium series determined by gamma spectrometry ranged from 0.93 to 73.68 Bq/kg, while for K-40 the concentration ranged from 84.14 to 904.38 Bq/kg. The obtained results were used primarily to define the variability in measured environmental radiation and to determine the coal plant’s influence in the measured radiation levels. The highest values were measured at two locations near the power plant and at locations between the distance of 6 and 20 km away from the stacks, mainly in the prevailing wind direction. The results showed an increase or at least an influence from the coal-fired plant operations, both qualitatively and quantitatively.
Resumo:
The aim of this work was to simulate the radionuclides dispersion in the surrounding area of a coal-fired power plant, operational during the last 25 years. The dispersion of natural radionuclides (236Ra, 232Th and 40K) was simulated by a Gaussian plume dispersion model with three different stability classes estimating the radionuclides concentration at ground level. Measurements of the environmen-tal activity concentrations were carried out by γ-spectrometry and compared with results from the air dispersion and deposition model which showed that the stabil-ity class D causes the dispersion to longer distances up to 20 km from the stacks.
Resumo:
Hand-off (or hand-over), the process where mobile nodes select the best access point available to transfer data, has been well studied in wireless networks. The performance of a hand-off process depends on the specific characteristics of the wireless links. In the case of low-power wireless networks, hand-off decisions must be carefully taken by considering the unique properties of inexpensive low-power radios. This paper addresses the design, implementation and evaluation of smart-HOP, a hand-off mechanism tailored for low-power wireless networks. This work has three main contributions. First, it formulates the hard hand-off process for low-power networks (such as typical wireless sensor networks - WSNs) with a probabilistic model, to investigate the impact of the most relevant channel parameters through an analytical approach. Second, it confirms the probabilistic model through simulation and further elaborates on the impact of several hand-off parameters. Third, it fine-tunes the most relevant hand-off parameters via an extended set of experiments, in a realistic experimental scenario. The evaluation shows that smart-HOP performs well in the transitional region while achieving more than 98 percent relative delivery ratio and hand-off delays in the order of a few tens of a milliseconds.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Sistemas Gráficos e Multimédia
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.
Resumo:
This paper proposes a methodology to increase the probability of delivering power to any load point through the identification of new investments. The methodology uses a fuzzy set approach to model the uncertainty of outage parameters, load and generation. A DC fuzzy multicriteria optimization model considering the Pareto front and based on mixed integer non-linear optimization programming is developed in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power to all customers in the distribution network at the minimum possible cost for the system operator, while minimizing the non supplied energy cost. To illustrate the application of the proposed methodology, the paper includes a case study which considers an 33 bus distribution network.
Resumo:
A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network
Resumo:
The electricity market restructuring, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in an rising complexity in power systems operation. Various power system simulators have been introduced in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex environment. This paper focuses on the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The restructuring of MASCEM (Multi-Agent System for Competitive Electricity Markets), and this system’s integration with MASGriP (Multi-Agent Smart Grid Platform), and ALBidS (Adaptive Learning Strategic Bidding System) provide the means for the exemplification of the usefulness of this ontology. A practical example is presented, showing how common simulation scenarios for different simulators, directed to very distinct environments, can be created departing from the proposed ontology.
Resumo:
The use of renewables have been increased I several countries around the world, namely in Europe. The wind power is generally the larger renewable resource with very specific characteristics in what concerns its variability and the inherent impacts in the power systems and electricity markets operation. This paper focuses on the Portuguese context of renewables use, including wind power. The work here presented includes the use of a real time pricing methodology developed by the authors aiming the reduction of electricity consumption in the moments of unexpected low wind power. A more specific example of application of real time pricing is demonstrated for the minimization of the operation costs in a distribution network. When facing lower wind power generation than expected from day ahead forecast, demand response is used in order to minimize the impacts of such wind availability change. In this way, consumers actively participate in regulation up and spinning reserve ancillary services through demand response programs.