160 resultados para Logic Programming,Constraint Logic Programming,Multi-Agent Systems,Labelled LP
Resumo:
One of the most difficult problems that face researchers experimenting with complex systems in real world applications is the Facility Layout Design Problem. It relies with the design and location of production lines, machinery and equipment, inventory storage and shipping facilities. In this work it is intended to address this problem through the use of Constraint Logic Programming (CLP) technology. The use of Genetic Algorithms (GA) as optimisation technique in CLP environment is also an issue addressed. The approach aims the implementation of genetic algorithm operators following the CLP paradigm.
Resumo:
This paper present a methodology to choose the distribution networks reconfiguration that presents the lower power losses. The proposed methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modeling for system component outage parameters. The proposed hybrid method using fuzzy sets and Monte Carlo simulation based on the fuzzyprobabilistic models allows catching both randomness and fuzziness of component outage parameters. A logic programming algorithm is applied, once obtained the system states by Monte Carlo Simulation, to get all possible reconfigurations for each system state. To evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation an AC load flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 115 buses distribution network.
Resumo:
This paper presents a methodology for distribution networks reconfiguration in outage presence in order to choose the reconfiguration that presents the lower power losses. The methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. Once obtained the system states by Monte Carlo simulation, a logical programming algorithm is applied to get all possible reconfigurations for every system state. In order to evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation a distribution power flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology to a practical case, the paper includes a case study that considers a real distribution network.
Resumo:
In this paper we present a Constraint Logic Programming (CLP) based model, and hybrid solving method for the Scheduling of Maintenance Activities in the Power Transmission Network. The model distinguishes from others not only because of its completeness but also by the way it models and solves the Electric Constraints. Specifically we present a efficient filtering algorithm for the Electrical Constraints. Furthermore, the solving method improves the pure CLP methods efficiency by integrating a type of Local Search technique with CLP. To test the approach we compare the method results with another method using a 24 bus network, which considerers 42 tasks and 24 maintenance periods.
Resumo:
Knowledge is central to the modern economy and society. Indeed, the knowledge society has transformed the concept of knowledge and is more and more aware of the need to overcome the lack of knowledge when has to make options or address its problems and dilemmas. One’s knowledge is less based on exact facts and more on hypotheses, perceptions or indications. Even when we use new computational artefacts and novel methodologies for problem solving, like the use of Group Decision Support Systems (GDSSs), the question of incomplete information is in most of the situations marginalized. On the other hand, common sense tells us that when a decision is made it is impossible to have a perception of all the information involved and the nature of its intrinsic quality. Therefore, something has to be made in terms of the information available and the process of its evaluation. It is under this framework that a Multi-valued Extended Logic Programming language will be used for knowledge representation and reasoning, leading to a model that embodies the Quality-of-Information (QoI) and its quantification, along the several stages of the decision-making process. In this way, it is possible to provide a measure of the value of the QoI that supports the decision itself. This model will be here presented in the context of a GDSS for VirtualECare, a system aimed at sustaining online healthcare services.
Resumo:
Over the past decades several approaches for schedulability analysis have been proposed for both uni-processor and multi-processor real-time systems. Although different techniques are employed, very little has been put forward in using formal specifications, with the consequent possibility for mis-interpretations or ambiguities in the problem statement. Using a logic based approach to schedulability analysis in the design of hard real-time systems eases the synthesis of correct-by-construction procedures for both static and dynamic verification processes. In this paper we propose a novel approach to schedulability analysis based on a timed temporal logic with time durations. Our approach subsumes classical methods for uni-processor scheduling analysis over compositional resource models by providing the developer with counter-examples, and by ruling out schedules that cause unsafe violations on the system. We also provide an example showing the effectiveness of our proposal.
Resumo:
A operação dos Mercados de Energia Eléctrica passa, actualmente, por uma profunda reestruturação, com o principal foco nas transacções do sistema de transmissão entre os diferentes agentes. Tendo isso em conta, o serviço de transmissão neste novo esquema de funcionamento do Mercado de Energia Eléctrica deve ser provido de máxima eficiência económica, atendendo sempre às restrições de segurança do sistema. Com esta reorganização do sector eléctrico da última década surgiu também a necessidade de rever os modelos tradicionais de optimização económica do Sistema Eléctrico de Energia, como por exemplo o despacho e prédespacho (unit commitment). A reestruturação e liberalização dos mercados de energia eléctrica trouxeram novas restrições a alguns dos problemas tradicionais associados aos Sistemas Eléctricos de Energia. Um desses problemas é o Escalonamento da Produção de Energia Eléctrica, que no contexto actual, implica quase sempre negociação entre os diferentes agentes do mercado e consequentemente reescalonamento. A maioria dos métodos usados para a resolução do problema não permitem reformular o prédespacho, algo para que a Programação Lógica por Restrições é extremamente adequada. O trabalho desenvolvido nesta dissertação visa criar uma aplicação computacional com base na Programação Lógica por Restrições, através da plataforma ECLiPSe, para resolver o problema do Escalonamento da Produção de Energia Eléctrica dos grupos térmicos, demonstrando assim a versatilidade e flexibilidade deste tipo de programação aplicada a problema combinatoriais deste género.
Resumo:
Wireless Sensor Networks (WSNs) are increasingly used in various application domains like home-automation, agriculture, industries and infrastructure monitoring. As applications tend to leverage larger geographical deployments of sensor networks, the availability of an intuitive and user friendly programming abstraction becomes a crucial factor in enabling faster and more efficient development, and reprogramming of applications. We propose a programming pattern named sMapReduce, inspired by the Google MapReduce framework, for mapping application behaviors on to a sensor network and enabling complex data aggregation. The proposed pattern requires a user to create a network-level application in two functions: sMap and Reduce, in order to abstract away from the low-level details without sacrificing the control to develop complex logic. Such a two-fold division of programming logic is a natural-fit to typical sensor networking operation which makes sensing and topological modalities accessible to the user.
Resumo:
Distributed real-time systems such as automotive applications are becoming larger and more complex, thus, requiring the use of more powerful hardware and software architectures. Furthermore, those distributed applications commonly have stringent real-time constraints. This implies that such applications would gain in flexibility if they were parallelized and distributed over the system. In this paper, we consider the problem of allocating fixed-priority fork-join Parallel/Distributed real-time tasks onto distributed multi-core nodes connected through a Flexible Time Triggered Switched Ethernet network. We analyze the system requirements and present a set of formulations based on a constraint programming approach. Constraint programming allows us to express the relations between variables in the form of constraints. Our approach is guaranteed to find a feasible solution, if one exists, in contrast to other approaches based on heuristics. Furthermore, approaches based on constraint programming have shown to obtain solutions for these type of formulations in reasonable time.
Resumo:
Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.