144 resultados para algorithm optimization
Resumo:
Este projecto tem como objectivo a optimização das rotas dos técnicos de serviço após venda da Schmitt+Sohn Elevadores, associadas à realização das manutenções preventivas a cada elemento contratado à empresa (elevadores, escadas rolantes, etc). Como tal, é necessário fazer uma distribuição dos equipamentos que se encontram em carteira, por um dos técnicos que assegura a manutenção, pelos vários dias úteis de cada mês, e pelas horas de trabalho de cada dia. Apesar do técnico ter disponíveis, por dia, 8h de trabalho, apenas 6h podem ser preenchidas com manutenções preventivas. As 2h restantes são essencialmente para possíveis manutenções correctivas para as quais o técnico seja solicitado. Caso o técnico não seja contactado para resolver nenhuma avaria, essas horas podem ser utilizadas pelo mesmo para adiantar trabalho do dia seguinte, isto é, visitar já alguns dos próximos pontos de manutenção preventiva do dia seguinte, ou para compensar trabalho que esteja atrasado. De salientar que, para cada dia, as deslocações do técnico de qualquer local ao primeiro ponto de uma rota ou de regresso do último ponto de uma rota não são contabilizadas. O trabalho desenvolvido nesta dissertação pretende dar resposta ao problema apresentado pela Schmitt+Sohn Elevadores. Para isso foi desenvolvida uma heurística para a optimização das rotas dos técnicos. Esta é baseada no conceito de “vizinho mais próximo” que procura sempre o ponto que se apresenta mais perto do último ponto que foi adicionado à rota. Com base nesta metodologia, nos processos de escolha dos pontos que formam clusters, e na selecção dos pontos iniciais de cada uma das rotas diárias, a ferramenta de optimização resultante define as rotas diárias para que o percurso efectuado por cada técnico num mês seja o menor possível. São feitas alterações às rotas definidas inicialmente quando encontrados pontos de uma mesma entrada a serem visitados em dias diferentes. Isto obrigaria o técnico a fazer duas viagens ao mesmo local. Por fim, o resultado é apresentado num documento Word a ser utilizado pelo técnico como guia diário das suas deslocações aos equipamentos que necessitam de verificações periódicas. Os resultados obtidos foram comparados com as rotas que estavam a ser usadas pela empresa, tendo apresentado resultados de melhor qualidade, constatando-se a eficiência da solução criada pelo algoritmo proposto neste trabalho.
Resumo:
Quality of life is a concept influenced by social, economic, psychological, spiritual or medical state factors. More specifically, the perceived quality of an individual's daily life is an assessment of their well-being or lack of it. In this context, information technologies may help on the management of services for healthcare of chronic patients such as estimating the patient quality of life and helping the medical staff to take appropriate measures to increase each patient quality of life. This paper describes a Quality of Life estimation system developed using information technologies and the application of data mining algorithms to access the information of clinical data of patients with cancer from Otorhinolaryngology and Head and Neck services of an oncology institution. The system was evaluated with a sample composed of 3013 patients. The results achieved show that there are variables that may be significant predictors for the Quality of Life of the patient: years of smoking (p value 0.049) and size of the tumor (p value < 0.001). In order to assign the variables to the classification of the quality of life the best accuracy was obtained by applying the John Platt's sequential minimal optimization algorithm for training a support vector classifier. In conclusion data mining techniques allow having access to patients additional information helping the physicians to be able to know the quality of life and produce a well-informed clinical decision.
Resumo:
In the traditional paradigm, the large power plants supply the reactive power required at a transmission level and the capacitors and transformer tap changer were also used at a distribution level. However, in a near future will be necessary to schedule both active and reactive power at a distribution level, due to the high number of resources connected in distribution levels. This paper proposes a new multi-objective methodology to deal with the optimal resource scheduling considering the distributed generation, electric vehicles and capacitor banks for the joint active and reactive power scheduling. The proposed methodology considers the minimization of the cost (economic perspective) of all distributed resources, and the minimization of the voltage magnitude difference (technical perspective) in all buses. The Pareto front is determined and a fuzzy-based mechanism is applied to present the best compromise solution. The proposed methodology has been tested in the 33-bus distribution network. The case study shows the results of three different scenarios for the economic, technical, and multi-objective perspectives, and the results demonstrated the importance of incorporating the reactive scheduling in the distribution network using the multi-objective perspective to obtain the best compromise solution for the economic and technical perspectives.
Resumo:
In this paper, we formulate the electricity retailers’ short-term decision-making problem in a liberalized retail market as a multi-objective optimization model. Retailers with light physical assets, such as generation and storage units in the distribution network, are considered. Following advances in smart grid technologies, electricity retailers are becoming able to employ incentive-based demand response (DR) programs in addition to their physical assets to effectively manage the risks of market price and load variations. In this model, the DR scheduling is performed simultaneously with the dispatch of generation and storage units. The ultimate goal is to find the optimal values of the hourly financial incentives offered to the end-users. The proposed model considers the capacity obligations imposed on retailers by the grid operator. The profit seeking retailer also has the objective to minimize the peak demand to avoid the high capacity charges in form of grid tariffs or penalties. The non-dominated sorting genetic algorithm II (NSGA-II) is used to solve the multi-objective problem. It is a fast and elitist multi-objective evolutionary algorithm. A case study is solved to illustrate the efficient performance of the proposed methodology. Simulation results show the effectiveness of the model for designing the incentive-based DR programs and indicate the efficiency of NSGA-II in solving the retailers’ multi-objective problem.
Resumo:
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
Resumo:
The Rural Postman Problem (RPP) is a particular Arc Routing Problem (ARP) which consists of determining a minimum cost circuit on a graph so that a given subset of required edges is traversed. The RPP is an NP-hard problem with significant real-life applications. This paper introduces an original approach based on Memetic Algorithms - the MARP algorithm - to solve the RPP and, also deals with an interesting Industrial Application, which focuses on the path optimization for component cutting operations. Memetic Algorithms are a class of Metaheuristics which may be seen as a population strategy that involves cooperation and competition processes between population elements and integrates “social knowledge”, using a local search procedure. The MARP algorithm is tested with different groups of instances and the results are compared with those gathered from other publications. MARP is also used in the context of various real-life applications.
Resumo:
Cloud data centers have been progressively adopted in different scenarios, as reflected in the execution of heterogeneous applications with diverse workloads and diverse quality of service (QoS) requirements. Virtual machine (VM) technology eases resource management in physical servers and helps cloud providers achieve goals such as optimization of energy consumption. However, the performance of an application running inside a VM is not guaranteed due to the interference among co-hosted workloads sharing the same physical resources. Moreover, the different types of co-hosted applications with diverse QoS requirements as well as the dynamic behavior of the cloud makes efficient provisioning of resources even more difficult and a challenging problem in cloud data centers. In this paper, we address the problem of resource allocation within a data center that runs different types of application workloads, particularly CPU- and network-intensive applications. To address these challenges, we propose an interference- and power-aware management mechanism that combines a performance deviation estimator and a scheduling algorithm to guide the resource allocation in virtualized environments. We conduct simulations by injecting synthetic workloads whose characteristics follow the last version of the Google Cloud tracelogs. The results indicate that our performance-enforcing strategy is able to fulfill contracted SLAs of real-world environments while reducing energy costs by as much as 21%.
Resumo:
Previously we have presented a model for generating human-like arm and hand movements on an unimanual anthropomorphic robot involved in human-robot collaboration tasks. The present paper aims to extend our model in order to address the generation of human-like bimanual movement sequences which are challenged by scenarios cluttered with obstacles. Movement planning involves large scale nonlinear constrained optimization problems which are solved using the IPOPT solver. Simulation studies show that the model generates feasible and realistic hand trajectories for action sequences involving the two hands. The computational costs involved in the planning allow for real-time human robot-interaction. A qualitative analysis reveals that the movements of the robot exhibit basic characteristics of human movements.
Resumo:
A new iterative algorithm based on the inexact-restoration (IR) approach combined with the filter strategy to solve nonlinear constrained optimization problems is presented. The high level algorithm is suggested by Gonzaga et al. (SIAM J. Optim. 14:646–669, 2003) but not yet implement—the internal algorithms are not proposed. The filter, a new concept introduced by Fletcher and Leyffer (Math. Program. Ser. A 91:239–269, 2002), replaces the merit function avoiding the penalty parameter estimation and the difficulties related to the nondifferentiability. In the IR approach two independent phases are performed in each iteration, the feasibility and the optimality phases. The line search filter is combined with the first one phase to generate a “more feasible” point, and then it is used in the optimality phase to reach an “optimal” point. Numerical experiences with a collection of AMPL problems and a performance comparison with IPOPT are provided.