165 resultados para Learning scenarios
Resumo:
A evolução dos dispositivos móveis e a mudança de paradigma educacional, permitiu o surgimento de um novo conceito no processo de ensino e aprendizagem, o mobile learning. O mobile learning pode ser visto como um conceito multidisciplinar, dependendo da perspetiva de cada autor, pois ainda não existe um consenso em relação à definição do conceito. No entanto, todos os autores concordam que o mobile learning consiste na aquisição de conhecimento ou competência através do uso de tecnologias móveis, em qualquer lugar e momento. A presente investigação, de natureza exploratória, pretendeu estudar a receptividade e predisposição dos estudantes e docentes do ensino superior para com a utilização do mobile learning, uma vez que o ensino superior parece ser o ambiente ideal para a realização deste estudo. Por um lado, devido à democratização dos dispositivos móveis, por outro, porque o Instituto Politécnico do Porto pretende vir a implementar um projeto de mobile learning, enquadrado no e- IPP. Deste modo, para a concretização desta investigação, foi realizada uma revisão bibliográfica exaustiva que serviu de base de sustentação para todo o trabalho, complementada com um questionário, de forma a dar resposta às questões de investigação. Depois de recolhidos todos os resultados obtidos através do questionário, procedeu-se à análise e discussão mesmos, bem como às respectivas conclusões.
Resumo:
MOOC (as an acronym for Massive Open Online Courses) are a quite new model for the delivery of online learning to students. As “Massive” and “Online”, these courses are proposed to be accessible to many more learners than would be possible through conventional teaching. As “Open” they are (frequently) free of charge and participation is not limited by the geographical situation of the learners, creating new learning opportunities in Higher Education Institutions (HEI). In this paper we describe a recently started project “Matemática 100 STRESS” (Math Without STRESS) integrated in the e-IPP project | e-Learning Unit of Porto’s Polytechnic Institute (IPP) which has created its own MOOC platform and launched its first course – Probabilities and Combinatorics – in early June/2014. In this MOOC development were involved several lecturers from four of the seven IPP schools.
Resumo:
The rising usage of distributed energy resources has been creating several problems in power systems operation. Virtual Power Players arise as a solution for the management of such resources. Additionally, approaching the main network as a series of subsystems gives birth to the concepts of smart grid and micro grid. Simulation, particularly based on multi-agent technology is suitable to model all these new and evolving concepts. MASGriP (Multi-Agent Smart Grid simulation Platform) is a system that was developed to allow deep studies of the mentioned concepts. This paper focuses on a laboratorial test bed which represents a house managed by a MASGriP player. This player is able to control a real installation, responding to requests sent by the system operators and reacting to observed events depending on the context.
Resumo:
Artificial Intelligence has been applied to dynamic games for many years. The ultimate goal is creating responses in virtual entities that display human-like reasoning in the definition of their behaviors. However, virtual entities that can be mistaken for real persons are yet very far from being fully achieved. This paper presents an adaptive learning based methodology for the definition of players’ profiles, with the purpose of supporting decisions of virtual entities. The proposed methodology is based on reinforcement learning algorithms, which are responsible for choosing, along the time, with the gathering of experience, the most appropriate from a set of different learning approaches. These learning approaches have very distinct natures, from mathematical to artificial intelligence and data analysis methodologies, so that the methodology is prepared for very distinct situations. This way it is equipped with a variety of tools that individually can be useful for each encountered situation. The proposed methodology is tested firstly on two simpler computer versus human player games: the rock-paper-scissors game, and a penalty-shootout simulation. Finally, the methodology is applied to the definition of action profiles of electricity market players; players that compete in a dynamic game-wise environment, in which the main goal is the achievement of the highest possible profits in the market.
Resumo:
This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring process produced. Currently, lots of information concerning electricity markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge to define realistic scenarios, which are essential for understanding and forecast electricity markets behavior. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of electricity markets and of the behaviour of the involved entities. In this paper an adaptable tool capable of downloading, parsing and storing data from market operators’ websites is presented, assuring constant updating and reliability of the stored data.
Resumo:
The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.
Resumo:
The study of Electricity Markets operation has been gaining an increasing importance in the last years, as result of the new challenges that the restructuring produced. Currently, lots of information concerning Electricity Markets is available, as market operators provide, after a period of confidentiality, data regarding market proposals and transactions. These data can be used as source of knowledge, to define realistic scenarios, essential for understanding and forecast Electricity Markets behaviour. The development of tools able to extract, transform, store and dynamically update data, is of great importance to go a step further into the comprehension of Electricity Markets and the behaviour of the involved entities. In this paper we present an adaptable tool capable of downloading, parsing and storing data from market operators’ websites, assuring actualization and reliability of stored data.
Resumo:
This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.
Resumo:
This paper presents the first phase of the redevelopment of the Electric Vehicle Scenario Simulator (EVeSSi) tool. A new methodology to generate traffic demand scenarios for the Simulation of Urban MObility (SUMO) tool for urban traffic simulation is described. This methodology is based on a Portugal census database to generate a synthetic population for a given area under study. A realistic case study of a Portuguese city, Vila Real, is assessed. For this area the road network was created along with a synthetic population and public transport. The traffic results were obtained and an electric buses fleet was evaluated assuming that the actual fleet would be replaced in a near future. The energy requirements to charge the electric fleet overnight were estimated in order to evaluate the impacts that it would cause in the local electricity network.
Resumo:
The integration of the Smart Grid concept into the electric grid brings to the need for an active participation of small and medium players. This active participation can be achieved using decentralized decisions, in which the end consumer can manage loads regarding the Smart Grid needs. The management of loads must handle the users’ preferences, wills and needs. However, the users’ preferences, wills and needs can suffer changes when faced with exceptional events. This paper proposes the integration of exceptional events into the SCADA House Intelligent Management (SHIM) system developed by the authors, to handle machine learning issues in the domestic consumption context. An illustrative application and learning case study is provided in this paper.
Resumo:
The process of Competences Recognition, Validation and Certification , also known as Accreditation of Prior Learning (APL), is an innovative means of attaining school certificates for individuals without an academic background. The main objective of this process is to validate what people have learned in informal contexts, in order to attribute academic certificates. With the increasing interest of the qualification of workers and governmental support, more and more Portuguese organizations promote this process within their facilities and their work hours. This study explores the relationship between the promotion of this Human Resource Development Programme and employee’s attitudes (Job Satisfaction and Organizational Commitment) and behaviours (Extra-role Organizational Citizenship Behaviours) towards the organization they work for. Results of a cross-sectional survey of Portuguese Industrial Workers (N=135) showed that statistical significant results are in the higher levels of Voice Behaviours (a dimension of Extra-role Organizational Citizenship Behaviour in the groups of workers who were involved or had graduated from the firm promoted APL process.
Resumo:
ISCAP’s Information Systems Department is composed of about twenty teachers who have, for several years, been using an e-learning environment (Moodle) combined with traditional assessment. A new e-assessment strategy was implemented recently in order to evaluate a practical topic, the use of spreadsheets to solve management problems. This topic is common to several courses of different undergraduate degree programs. Being e-assessment an outstanding task regarding theoretical topics, it becomes even more challenging when the topics under evaluation are practical. In order to understand the implications of this new type of assessment from the viewpoint of the students, questionnaires and interviews were undertaken. In this paper the analysis of the questionnaires are presented and discussed.