60 resultados para conjugation beam method
Resumo:
The interlaminar fracture toughness in pure mode II (GIIc) of a Carbon-Fibre Reinforced Plastic (CFRP) composite is characterized experimentally and numerically in this work, using the End-Notched Flexure (ENF) fracture characterization test. The value of GIIc was extracted by a new data reduction scheme avoiding the crack length measurement, named Compliance-Based Beam Method (CBBM). This method eliminates the crack measurement errors, which can be non-negligible, and reflect on the accuracy of the fracture energy calculations. Moreover, it accounts for the Fracture Process Zone (FPZ) effects. A numerical study using the Finite Element Method (FEM) and a triangular cohesive damage model, implemented within interface finite elements and based on the indirect use of Fracture Mechanics, was performed to evaluate the suitability of the CBBM to obtain GIIc. This was performed comparing the input values of GIIc in the numerical models with the ones resulting from the application of the CBBM to the numerical load-displacement (P-) curve. In this numerical study, the Compliance Calibration Method (CCM) was also used to extract GIIc, for comparison purposes.
Resumo:
O constante desenvolvimento observado nas ligações adesivas, em conjunto com as melhorias verificadas nas características dos adesivos, estão a ser traduzidos, de uma certa forma, num aumento das aplicações das ligações adesivas, assim como na variedade de aplicações. No âmbito da previsão de resistência de juntas adesivas, dois métodos de grande relevância são a Mecânica da Fratura e os Modelos de Dano Coesivo. Os Modelos de Dano Coesivo permitem a simulação da iniciação e propagação do dano, recorrendo ao Método Dos Elementos Finitos. No que concerne à Mecânica da Fratura, a previsão de resistência é geralmente feita através de uma análise energética. Independentemente da forma como é obtida, a taxa crítica de libertação de energia de deformação à tração (GIc) dos adesivos é um dos parâmetros mais importantes para a previsão da resistência das juntas. Dois dos ensaios mais utilizados são o Double Cantilever Beam (DCB) e o Tapered Double Cantilever Beam (TDCB). Este trabalho pretende determinar e comparar o valor de GIc em juntas adesivas pelos ensaios DCB e TDCB. São utilizados três tipos de adesivos com diferentes graus de ductilidade. No ensaio DCB os métodos utilizados para a determinação de GIc são: Compliance-Based Beam Method (CBBM), Corrected Beam Theory (CBT) e Compliance Calibration Method (CCM). Os métodos utilizados no ensaio TDCB são: Simple Beam Theory (SBT), Corrected Beam Theory (CBT) e Compliance Calibration Method (CCM). Os resultados obtidos apresentam concordância entre os vários métodos de cada ensaio. A discrepância de resultados é superior quando comparados os dois tipos de ensaios.
Resumo:
Os adesivos têm sido alvo de estudo ao longo dos últimos anos para ligação de componentes a nível industrial. Devido à crescente utilização das juntas adesivas, torna-se necessária a existência de modelos de previsão de resistência que sejam fiáveis e robustos. Neste âmbito, a determinação das propriedades dos adesivos é fundamental para o projeto de ligações coladas. Uma abordagem recente consiste no uso de modelos de dano coesivo (MDC), que permitem simular o comportamento à fratura das juntas de forma bastante fiável. Esta técnica requer a definição das leis coesivas em tração e corte. Estas leis coesivas dependem essencialmente de 2 parâmetros: a tensão limite e a tenacidade no modo de solicitação respetivo. O ensaio End-Notched Flexure (ENF) é o mais utilizado para determinar a tenacidade em corte, porque é conhecido por ser o mais expedito e fiável para caraterizar este parâmetro. Neste ensaio, os provetes são sujeitos a flexão em 3 pontos, sendo apoiados nas extremidades e solicitados no ponto médio para promover a flexão entre substratos, o que se reflete numa solicitação de corte no adesivo. A partir deste ensaio, e após de definida a tenacidade em corte (GIIc), existem alguns métodos para estimativa da lei coesiva respetiva. Nesta dissertação são definidas as leis coesivas em corte de três adesivos estruturais através do ensaio ENF e um método inverso de ajuste dos dados experimentais. Para o efeito, foram realizados ensaios experimentais considerado um adesivo frágil, o Araldite® AV138, um adesivo moderadamente dúctil, o Araldite® 2015 e outro dúctil, o SikaForce® 7752. O trabalho experimental consistiu na realização dos ensaios ENF e respetivo tratamento dos dados para obtenção das curvas de resistência (curvas-R) através dos seguintes métodos: Compliance Calibration Method (CCM), Direct Beam Theory (DBT), Corrected Beam Theory (CBT) e Compliance-Based Beam Method (CBBM). Os ensaios foram simulados numericamente pelo código comercial ABAQUS®, recorrendo ao Métodos de Elementos Finitos (MEF) e um MDC triangular, com o intuito de estimar a lei coesiva de cada um dos adesivos em solicitação de corte. Após este estudo, foi feita uma análise de sensibilidade ao valor de GIIc e resistência coesiva ao corte (tS 0), para uma melhor compreensão do efeito destes parâmetros na curva P- do ensaio ENF. Com o objetivo de testar adequação dos 4 métodos de obtenção de GIIc usados neste trabalho, estes foram aplicados a curvas P- numéricas de cada um dos 3 adesivos, e os valores de GIIc previstos por estes métodos comparados com os respetivos valores introduzidos nos modelos numéricos. Como resultado do trabalho realizado, conseguiu-se obter uma lei coesiva única em corte para cada um dos 3 adesivos testados, que é capaz de reproduzir com precisão os resultados experimentais.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
A simple procedure to measure the cohesive laws of bonded joints under mode I loading using the double cantilever beam test is proposed. The method only requires recording the applied load–displacement data and measuring the crack opening displacement at its tip in the course of the experimental test. The strain energy release rate is obtained by a procedure involving the Timoshenko beam theory, the specimen’s compliance and the crack equivalent concept. Following the proposed approach the influence of the fracture process zone is taken into account which is fundamental for an accurate estimation of the failure process details. The cohesive law is obtained by differentiation of the strain energy release rate as a function of the crack opening displacement. The model was validated numerically considering three representative cohesive laws. Numerical simulations using finite element analysis including cohesive zone modeling were performed. The good agreement between the inputted and resulting laws for all the cases considered validates the model. An experimental confirmation was also performed by comparing the numerical and experimental load–displacement curves. The numerical load–displacement curves were obtained by adjusting typical cohesive laws to the ones measured experimentally following the proposed approach and using finite element analysis including cohesive zone modeling. Once again, good agreement was obtained in the comparisons thus demonstrating the good performance of the proposed methodology.
Resumo:
Adhesive-bonding for the unions in multi-component structures is gaining momentum over welding, riveting and fastening. It is vital for the design of bonded structures the availability of accurate damage models, to minimize design costs and time to market. Cohesive Zone Models (CZM’s) have been used for fracture prediction in structures. The eXtended Finite Element Method (XFEM) is a recent improvement of the Finite Element Method (FEM) that relies on traction-separation laws similar to those of CZM’s but it allows the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom. This work proposes and validates a damage law to model crack propagation in a thin layer of a structural epoxy adhesive using the XFEM. The fracture toughness in pure mode I (GIc) and tensile cohesive strength (sn0) were defined by Double-Cantilever Beam (DCB) and bulk tensile tests, respectively, which permitted to build the damage law. The XFEM simulations of the DCB tests accurately matched the experimental load-displacement (P-d) curves, which validated the analysis procedure.
Resumo:
Adhesive bonding is nowadays a serious candidate to replace methods such as fastening or riveting, because of attractive mechanical properties. As a result, adhesives are being increasingly used in industries such as the automotive, aerospace and construction. Thus, it is highly important to predict the strength of bonded joints to assess the feasibility of joining during the fabrication process of components (e.g. due to complex geometries) or for repairing purposes. This work studies the tensile behaviour of adhesive joints between aluminium adherends considering different values of adherend thickness (h) and the double-cantilever beam (DCB) test. The experimental work consists of the definition of the tensile fracture toughness (GIC) for the different joint configurations. A conventional fracture characterization method was used, together with a J-integral approach, that take into account the plasticity effects occurring in the adhesive layer. An optical measurement method is used for the evaluation of crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab® sub-routine for the automated extraction of these quantities. As output of this work, a comparative evaluation between bonded systems with different values of adherend thickness is carried out and complete fracture data is provided in tension for the subsequent strength prediction of joints with identical conditions.
Resumo:
Learning is not a spectator’s sport. Students do not learn much by just sitting in class listening their teachers, memorizing pre-packaged assignments and spitting out answers. The teaching-learning process has been a constant target of studies, particularly in Higher Education, in consequence of the annual increase of new students. The concern with maintaining a desired quality level in the training of these students, conjugated with the will to widen the access to all of those who finish Secondary School Education, has triggered a greater intervention from the education specialists, in partnership with the teachers of all Higher Education areas, in the analysis of this problem. Considering the particular case of Engineering, it has been witnessed a rising concern with the active learning strategies and forms of assessment. Research has demonstrated that students learn more if they are actively engaged with the material they are studying. In this presentation we describe, present and discuss the techniques and the results of Peer Instruction method in an introductory Calculus courses of an Engineering Bach
Resumo:
In this paper we present a Constraint Logic Programming (CLP) based model, and hybrid solving method for the Scheduling of Maintenance Activities in the Power Transmission Network. The model distinguishes from others not only because of its completeness but also by the way it models and solves the Electric Constraints. Specifically we present a efficient filtering algorithm for the Electrical Constraints. Furthermore, the solving method improves the pure CLP methods efficiency by integrating a type of Local Search technique with CLP. To test the approach we compare the method results with another method using a 24 bus network, which considerers 42 tasks and 24 maintenance periods.
Resumo:
This paper proposes a computationally efficient methodology for the optimal location and sizing of static and switched shunt capacitors in large distribution systems. The problem is formulated as the maximization of the savings produced by the reduction in energy losses and the avoided costs due to investment deferral in the expansion of the network. The proposed method selects the nodes to be compensated, as well as the optimal capacitor ratings and their operational characteristics, i.e. fixed or switched. After an appropriate linearization, the optimization problem was formulated as a large-scale mixed-integer linear problem, suitable for being solved by means of a widespread commercial package. Results of the proposed optimizing method are compared with another recent methodology reported in the literature using two test cases: a 15-bus and a 33-bus distribution network. For the both cases tested, the proposed methodology delivers better solutions indicated by higher loss savings, which are achieved with lower amounts of capacitive compensation. The proposed method has also been applied for compensating to an actual large distribution network served by AES-Venezuela in the metropolitan area of Caracas. A convergence time of about 4 seconds after 22298 iterations demonstrates the ability of the proposed methodology for efficiently handling large-scale compensation problems.
Resumo:
Introduction / Aims: Adopting the important decisions represents a specific task of the manager. An efficient manager takes these decisions during a sistematic process with well-defined elements, each with a precise order. In the pharmaceutical practice and business, in the supply process of the pharmacies, there are situations when the medicine distributors offer a certain discount, but require payment in a shorter period of time. In these cases, the analysis of the offer can be made with the help of the decision tree method, which permits identifying the decision offering the best possible result in a given situation. The aims of the research have been the analysis of the product offers of many different suppliers and the establishing of the most advantageous ways of pharmacy supplying. Material / Methods: There have been studied the general product offers of the following medical stores: A&G Med, Farmanord, Farmexim, Mediplus, Montero and Relad. In the case of medicine offers including a discount, the decision tree method has been applied in order to select the most advantageous offers. The Decision Tree is a management method used in taking the right decisions and it is generally used when one needs to evaluate the decisions that involve a series of stages. The tree diagram is used in order to look for the most efficient means to attain a specific goal. The decision trees are the most probabilistic methods, useful when adopting risk taking decisions. Results: The results of the analysis on the tree diagrams have indicated the fact that purchasing medicines with discount (1%, 10%, 15%) and payment in a shorter time interval (120 days) is more profitable than purchasing without a discount and payment in a longer time interval (160 days). Discussion / Conclusion: Depending on the results of the tree diagram analysis, the pharmacies would purchase from the selected suppliers. The research has shown that the decision tree method represents a valuable work instrument in choosing the best ways for supplying pharmacies and it is very useful to the specialists from the pharmaceutical field, pharmaceutical management, to medicine suppliers, pharmacy practitioners from the community pharmacies and especially to pharmacy managers, chief – pharmacists.
Resumo:
Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. Each agent has the knowledge about a different method for defining a strategy for playing in the market, the main agent chooses the best among all those, and provides it to the market player that requests, to be used in the market. This paper also presents a methodology to manage the efficiency/effectiveness balance of this method, to guarantee that the degradation of the simulator processing times takes the correct measure.
Resumo:
It is difficult to get the decision about an opinion after many users get the meeting in same place. It used to spend too much time in order to find solve some problem because of the various opinions of each other. TAmI (Group Decision Making Toolkit) is the System to Group Decision in Ambient Intelligence [1]. This program was composed with IGATA [2], WebMeeting and the related Database system. But, because it is sent without any encryption in IP / Password, it can be opened to attacker. They can use the IP / Password to the bad purpose. As the result, although they make the wrong result, the joined member can’t know them. Therefore, in this paper, we studied the applying method of user’s authentication into TAmI.
Resumo:
We have developed a new method for single-drop microextraction (SDME) for the preconcentration of organochlorine pesticides (OCP) from complex matrices. It is based on the use of a silicone ring at the tip of the syringe. A 5 μL drop of n-hexane is applied to an aqueous extract containing the OCP and found to be adequate to preconcentrate the OCPs prior to analysis by GC in combination with tandem mass spectrometry. Fourteen OCP were determined using this technique in combination with programmable temperature vaporization. It is shown to have many advantages over traditional split/splitless injection. The effects of kind of organic solvent, exposure time, agitation and organic drop volume were optimized. Relative recoveries range from 59 to 117 %, with repeatabilities of <15 % (coefficient of variation) were achieved. The limits of detection range from 0.002 to 0.150 μg kg−1. The method was applied to the preconcentration of OCPs in fresh strawberry, strawberry jam, and soil.
Resumo:
A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon>2.3%) and LS (organic carbon<2.3%). Themethod was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrixmatched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70–120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg−1 and from 11.41 to 79.23 μg kg−1, respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg−1 and the limits of quantification from 20.37 to 49.27 μg kg−1. In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg−1) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.