31 resultados para Pesticides removal
Resumo:
This research work has been focused in the study of gallinaceous feathers, a waste that may be valorised as sorbent, to remove the Dark Blue Astrazon 2RN (DBA) from Dystar. This study was focused on the following aspects: optimization of experimental conditions through factorial design methodology, kinetic studies into a continuous stirred tank adsorber (at pH 7 and 20ºC), equilibrium isotherms (at pH 5, 7 and 9 at 20 and 45ºC) and column studies (at 20ºC, at pH 5, 7 and 9). In order to evaluate the influence of the presence of other components in the sorption of the dyestuff, all experiments were performed both for the dyestuff in aqueous solution and in real textile effluent. The pseudo-first and pseudo-second order kinetic models were fitted to the experimental data, being the latter the best fit for the aqueous solution of dyestuff. For the real effluent both models fit the experimental results and there is no statistical difference between them. The Central Composite Design (CCD) was used to evaluate the effects of temperature (15 - 45ºC) and pH (5 - 9) over the sorption in aqueous solution. The influence of pH was more significant than temperature. The optimal conditions selected were 45ºC and pH 9. Both Langmuir and Freundlich models could fit the equilibrium data. In the concentration range studied, the highest sorbent capacity was obtained for the optimal conditions in aqueous solution, which corresponds to a maximum capacity of 47± 4 mg g-1. The Yoon-Nelson, Thomas and Yan’s models fitted well the column experimental data. The highest breakthrough time for 50% removal, 170 min, was obtained at pH 9 in aqueous solution. The presence of the dyeing agents in the real wastewater decreased the sorption of the dyestuff mostly for pH 9, which is the optimal pH. The effect of pH is less pronounced in the real effluent than in aqueous solution. This work shows that feathers can be used as sorbent in the treatment of textile wastewaters containing DBA.
Resumo:
This paper describes a comparison of adaptations of the QuEChERS (quick, easy, cheap, effective, rugged and safe) approach for the determination of 14 organochlorine pesticide (OCP) residues in strawberry jam by concurrent use of gas chromatography (GC) coupled to electron capture detector (ECD) and GC tandem mass spectrometry (GC-MS/MS). Three versions were tested based on the original QuEChERS method. The results were good (overall average of 89% recoveries with 15% RSD) using the ultrasonic bath at five spiked levels. Performance characteristics, such as accuracy, precision, linear range, limits of detection (LOD) and quantification (LOQ), were determined for each pesticide. LOD ranged from 0.8 to 8.9 microg kg-1 ; LOQ was in the range of 2.5–29.8 microg kg- 1; and calibration curves were linear (r2>0.9970) in the whole range of the explored concentrations (5–100 microg kg- 1). The LODs of these pesticides were much lower than the maximum residue levels (MRLs) allowed in Europe for strawberries. The method was successfully applied to the quantification of OCP in commercially available jams. The OCPs were detected lower than the LOD.
Resumo:
We have developed a new method for single-drop microextraction (SDME) for the preconcentration of organochlorine pesticides (OCP) from complex matrices. It is based on the use of a silicone ring at the tip of the syringe. A 5 μL drop of n-hexane is applied to an aqueous extract containing the OCP and found to be adequate to preconcentrate the OCPs prior to analysis by GC in combination with tandem mass spectrometry. Fourteen OCP were determined using this technique in combination with programmable temperature vaporization. It is shown to have many advantages over traditional split/splitless injection. The effects of kind of organic solvent, exposure time, agitation and organic drop volume were optimized. Relative recoveries range from 59 to 117 %, with repeatabilities of <15 % (coefficient of variation) were achieved. The limits of detection range from 0.002 to 0.150 μg kg−1. The method was applied to the preconcentration of OCPs in fresh strawberry, strawberry jam, and soil.
Resumo:
A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon>2.3%) and LS (organic carbon<2.3%). Themethod was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrixmatched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70–120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg−1 and from 11.41 to 79.23 μg kg−1, respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg−1 and the limits of quantification from 20.37 to 49.27 μg kg−1. In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg−1) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Resumo:
Purpose: The sorption of sulfamethoxazole, a frequently detected pharmaceutical compound in the environment, onto walnut shells was evaluated. Methods: The sorption proprieties of the raw sorbent were chemically modified and two additional samples were obtained, respectively HCl and NaOH treated. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric (TG/DTG) techniques were applied to investigate the effect of the chemical treatments on the shell surface morphology and chemistry. Sorption experiments to investigate the pH effect on the process were carried out between pH 2 and 8. Results: The chemical treatment did not substantially alter the structure of the sorbent (physical and textural characteristics) but modified the surface chemistry of the sorbent (acid–base properties, point of zero charge—pHpzc). The solution pH influences both the sorbent’s surface charge and sulfamethoxazole speciation. The best removal efficiencies were obtained for lower pH values where the neutral and cationic sulfamethoxazole forms are present in the solution. Langmuir and Freundlich isotherms were applied to the experimental adsorption data for sulfamethoxazole sorption at pH 2, 4, and 7 onto raw walnut shell. No statistical difference was found between the two models except for the pH 2 experimental data to which the Freundlich model fitted better. Conclusion: Sorption of sulfamethoxazole was found to be highly pH dependent in the entire pH range studied and for both raw and treated sorbent.
Resumo:
Multiclass analysis method was optimized in order to analyze pesticides traces by gas chromatography with ion-trap and tandem mass spectrometry (GC-MS/MS). The influence of some analytical parameters on pesticide signal response was explored. Five ion trap mass spectrometry (IT-MS) operating parameters, including isolation time (IT), excitation voltage (EV), excitation time (ET),maximum excitation energy or “q” value (q), and isolationmass window (IMW) were numerically tested in order to maximize the instrument analytical signal response. For this, multiple linear regression was used in data analysis to evaluate the influence of the five parameters on the analytical response in the ion trap mass spectrometer and to predict its response. The assessment of the five parameters based on the regression equations substantially increased the sensitivity of IT-MS/MS in the MS/MS mode. The results obtained show that for most of the pesticides, these parameters have a strong influence on both signal response and detection limit.Using the optimized method, a multiclass pesticide analysis was performed for 46 pesticides in a strawberry matrix. Levels higher than the limit established for strawberries by the European Union were found in some samples.
Resumo:
The main goal of this research study was the removal of Cu(II), Ni(II) and Zn(II) from aqueous solutions using peanut hulls. This work was mainly focused on the following aspects: chemical characterization of the biosorbent, kinetic studies, study of the pH influence in mono-component systems, equilibrium isotherms and column studies, both in mono and tri-component systems, and with a real industrial effluent from the electroplating industry. The chemical characterization of peanut hulls showed a high cellulose (44.8%) and lignin (36.1%) content, which favours biosorption of metal cations. The kinetic studies performed indicate that most of the sorption occurs in the first 30 min for all systems. In general, a pseudo-second order kinetics was followed, both in mono and tri-component systems. The equilibrium isotherms were better described by Freundlich model in all systems. Peanut hulls showed higher affinity for copper than for nickel and zinc when they are both present. The pH value between 5 and 6 was the most favourable for all systems. The sorbent capacity in column was 0.028 and 0.025 mmol g-1 for copper, respectively in mono and tri-component systems. A decrease of capacity for copper (50%) was observed when dealing with the real effluent. The Yoon-Nelson, Thomas and Yan’s models were fitted to the experimental data, being the latter the best fit.
Resumo:
Specific marine macro algae species abundant at the Portuguese coast (Laminaria hyperborea, Bifurcaria bifurcata, Sargassum muticum and Fucus spiralis) were shown to be effective for removing toxic metals (Cd(II), Zn(II) and Pb(II)) from aqueous solutions. The initial metal concentrations in solution were about 75–100 mg L−1. The observed biosorption capacities for cadmium, zinc and lead ions were in the ranges of 23.9–39.5, 18.6–32.0 and 32.3–50.4 mg g−1, respectively. Kinetic studies revealed that the metal uptake rate was rather fast, with 75% of the total amount occurring in the first 10 min for all algal species. Experimental data were well fitted by a pseudo-second order rate equation. The contribution of internal diffusion mechanism was significant only to the initial biosorption stage. Results indicate that all the studied macro algae species can provide an efficient and cost-effective technology for eliminating heavy metals from industrial effluents.
Resumo:
A multiresidue approach using microwave-assisted extraction and liquid chromatography with photodiode array detection was investigated for the determination of butylate, carbaryl, carbofuran, chlorpropham, ethiofencarb, linuron,metobromuron, and monolinuron in soils. The critical parameters of the developed methodology were studied. Method validation was performed by analyzing freshly and aged spiked soil samples. The recoveries and relative standard deviations reached using the optimized conditions were between 77.0 ± 0.46% and 120 ± 2.9% except for ethiofencarb (46.4 ± 4.4% to 105 ± 1.6%) and butylate (22.1 ± 7.6% to 49.2 ± 11%). Soil samples from five locations of Portugal were analysed.
Resumo:
Biphentrin, a known pyrethroid, was studied, aiming its removal from aqueous solutions by granulated cork sorption. Batch experiments, either for equilibrium or for kinetics, with two granulated cork sizes were performed and results were compared with those obtained with of activated carbon sorption. Langmuir and Freundlich adsorption isotherms were obtained both showing high linear correlations. Bifenthrin desorption was evaluated for cork and results varied with the granule size of sorbent. The results obtained in this work indicate that cork wastes may be used as a cheap natural sorbent for bifenthrin or similar compounds removal from wastewaters.
Resumo:
A method for the determination of some pesticide residues in must and wine samples was developed using solid-phase microextraction (SPME) and gas chromatography – electron capture detection (GC/ECD). The procedure only needs dilution as sample pre-treatment and is therefore simple, fast and solvent-free. Eight fungicides (vinclozolin, procymidone, iprodione, penconazole, fenarimol, folpet, nuarimol and hexaconazole), one insecticide (chlorpyriphos) and two acaricides (bromopropylate and tetradifon) can be quantified. Good linearity was observed for all the compounds in the range 5–100 µg/L. The reproducibility of the measurements was found acceptable (with RSD’s below 20%). Detection limits of 11 µg/L, on average, are sufficiently below the proposed maximum residue limits (MRL’s) for these compounds in wine. The analytical method was applied to the determination of these compounds in Portuguese must and wine samples from the Demarcated Region of Alentejo, where any residues could be detected.
Resumo:
This research work aims to study the use of peanut hulls, an agricultural and food industry waste, for copper and lead removal through equilibrium and kinetic parameters evaluation. Equilibrium batch studies were performed in a batch adsorber. The influence of initial pH was evaluated (3–5) and it was selected between 4.0 and 4.5. The maximum sorption capacities obtained for the Langmuir model were 0.21 ± 0.03 and 0.18 ± 0.02 mmol/g, respectively for copper and lead. In bi-component systems, competitive sorption of copper and lead was verified, the total amount adsorbed being around 0.21 mmol of metal per gram of material in both mono and bi-component systems. In the kinetic studies equilibrium was reached after 200 min contact time using a 400 rpm stirring rate, achieving 78% and 58% removal, in mono-component system, for copper and lead respectively. Their removal follows a pseudo-second-order kinetics. These studies show that most of the metals removal occurred in the first 20 min of contact, which shows a good uptake rate in all systems.
Resumo:
A new procedure for determining eleven organochlorine pesticides in soils using microwave-assisted extraction (MAE) and headspace solid phase microextraction (HS-SPME) is described. The studied pesticides consisted of mirex, α- and γ-chlordane, p,p’-DDT, heptachlor, heptachlor epoxide isomer A, γ-hexachlorocyclohexane, dieldrin, endrin, aldrine and hexachlorobenzene. The HS-SPME was optimized for the most important parameters such as extraction time, sample volume and temperature. The present analytical procedure requires a reduced volume of organic solvents and avoids the need for extract clean-up steps. For optimized conditions the limits of detection for the method ranged from 0.02 to 3.6 ng/g, intermediate precision ranged from 14 to 36% (as CV%), and the recovery from 8 up to 51%. The proposed methodology can be used in the rapid screening of soil for the presence of the selected pesticides, and was applied to landfill soil samples.
Resumo:
A SPME-GC-MS/MS method for the determination of eight organophosphorus pesticides (azinphos-methyl, chlorpyriphos, chlorpyriphos-methyl, diazinon, fenitrothion, fenthion, malathion, and methidathion) in still and fortified wine was developed. The extraction procedure is simple, solvent free, and without any sample pretreatment. Limits of detection (LOD) and quantitation (LOQ) values in the range 0.1–14.3 lg/L and 0.2–43.3 lg/L, respectively, were obtained. The LOQ values are below the maximum residue levels (MRLs) established by European Regulation for grapes, with the exception of methidathion. Coefficients of correlation (R2) higher than 0.99 were obtained for the majority of the pesticides, in all different wines analyzed.
Resumo:
Infiltration galleries are among the oldest known means used for small public water fountains. Owing to its ancestral origin they are usually associated with high quality water. Thirty-one compounds, including pesticides and estrogens from different chemical families, were analysed in waters from infiltration galleries collected in Alto Douro Demarcated Wine region (North of Portugal). A total of twelve compounds were detected in the water samples. Nine of these compounds are described as presenting evidence or potential evidence of interfering with the hormone system of humans and wildlife. Although concentrations of the target analytes were relatively low, many of them below their limit of quantification, four compounds were above quantification limit and two of them even above the legal limit of 0.1 lg/L: dimethoate (30.38 ng/L), folpet (64.35 ng/L), terbuthylazine-desethyl (22.28 to 292.36 ng/L) and terbuthylazine (22.49 to 369.33 ng/L).