60 resultados para Data-stream balancing
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Uma grande parte do tempo de uma organização é despendida em atividades que não criam qualquer tipo de valor. Este tipo de atividades são consideradas como desperdícios, pois consomem recursos e tempo, como é o caso de deslocações, controlos, ajustes, armazenamento de materiais, resolução de problemas, entre tantos outros, levando a um elevado custo dos produtos disponibilizados. Em 1996 a designação de Lean Thinking foi usada, pela primeira vez, por Womack e Jones, onde é falada como uma filosofia de gestão, que tem como principal objetivo reduzir os desperdícios num processo produtivo. Reduzindo os desperdícios aumenta-se a qualidade e diminui-se os tempos de processamento e, consequentemente, os custos de produção. É nesta base que assenta o documento aqui presente, que tem o objetivo de criar e desenvolver um jogo de simulação onde seja possível aplicar várias ferramentas Lean. O jogo de simulação é uma continuação de uma pesquisa e estudo teórico de um aluno de erasmus e faz parte de um projeto internacional do Lean Learning Academy (LLA). Criou-se um processo produtivo de montagem de canetas que fosse o mais semelhante ao que se encontram nas empresas, com todos os acessórios para o pleno funcionamento da simulação, como é o caso de instruções de montagem, procedimentos de controlo e ordens de produção, para assim posteriormente ser possível analisar os dados e as dificuldades encontradas, de modo a aplicar-se as ferramentas Lean. Apesar de serem abordadas várias ferramentas Lean neste trabalho, foram trabalhadas mais detalhadamente as seguintes: - Value Stream Mapping (VSM); - Single Minute Exchange of Dies (SMED); - Balanceamento da linha. De modo a ser percetível o conteúdo e as vantagens das três ferramentas Lean mencionadas no trabalho, estas foram aplicadas e simuladas, de forma a existir uma componente prática no seu estudo, para mais fácil compreensão e rápida aprendizagem.
Resumo:
Esta dissertação apresenta uma proposta de sistema capaz de preencher a lacuna entre documentos legislativos em formato PDF e documentos legislativos em formato aberto. O objetivo principal é mapear o conhecimento presente nesses documentos de maneira a representar essa coleção como informação interligada. O sistema é composto por vários componentes responsáveis pela execução de três fases propostas: extração de dados, organização de conhecimento, acesso à informação. A primeira fase propõe uma abordagem à extração de estrutura, texto e entidades de documentos PDF de maneira a obter a informação desejada, de acordo com a parametrização do utilizador. Esta abordagem usa dois métodos de extração diferentes, de acordo com as duas fases de processamento de documentos – análise de documento e compreensão de documento. O critério utilizado para agrupar objetos de texto é a fonte usada nos objetos de texto de acordo com a sua definição no código de fonte (Content Stream) do PDF. A abordagem está dividida em três partes: análise de documento, compreensão de documento e conjunção. A primeira parte da abordagem trata da extração de segmentos de texto, adotando uma abordagem geométrica. O resultado é uma lista de linhas do texto do documento; a segunda parte trata de agrupar os objetos de texto de acordo com o critério estipulado, produzindo um documento XML com o resultado dessa extração; a terceira e última fase junta os resultados das duas fases anteriores e aplica regras estruturais e lógicas no sentido de obter o documento XML final. A segunda fase propõe uma ontologia no domínio legal capaz de organizar a informação extraída pelo processo de extração da primeira fase. Também é responsável pelo processo de indexação do texto dos documentos. A ontologia proposta apresenta três características: pequena, interoperável e partilhável. A primeira característica está relacionada com o facto da ontologia não estar focada na descrição pormenorizada dos conceitos presentes, propondo uma descrição mais abstrata das entidades presentes; a segunda característica é incorporada devido à necessidade de interoperabilidade com outras ontologias do domínio legal, mas também com as ontologias padrão que são utilizadas geralmente; a terceira característica é definida no sentido de permitir que o conhecimento traduzido, segundo a ontologia proposta, seja independente de vários fatores, tais como o país, a língua ou a jurisdição. A terceira fase corresponde a uma resposta à questão do acesso e reutilização do conhecimento por utilizadores externos ao sistema através do desenvolvimento dum Web Service. Este componente permite o acesso à informação através da disponibilização de um grupo de recursos disponíveis a atores externos que desejem aceder à informação. O Web Service desenvolvido utiliza a arquitetura REST. Uma aplicação móvel Android também foi desenvolvida de maneira a providenciar visualizações dos pedidos de informação. O resultado final é então o desenvolvimento de um sistema capaz de transformar coleções de documentos em formato PDF para coleções em formato aberto de maneira a permitir o acesso e reutilização por outros utilizadores. Este sistema responde diretamente às questões da comunidade de dados abertos e de Governos, que possuem muitas coleções deste tipo, para as quais não existe a capacidade de raciocinar sobre a informação contida, e transformá-la em dados que os cidadãos e os profissionais possam visualizar e utilizar.
Resumo:
Mestrado em Engenharia Mecânica – Especialização Gestão Industrial
Resumo:
Orientador Prof. Dr. João Domingues Costa
Resumo:
The main purpose of this study was to examine the applicability of geostatistical modeling to obtain valuable information for assessing the environmental impact of sewage outfall discharges. The data set used was obtained in a monitoring campaign to S. Jacinto outfall, located off the Portuguese west coast near Aveiro region, using an AUV. The Matheron’s classical estimator was used the compute the experimental semivariogram which was fitted to three theoretical models: spherical, exponential and gaussian. The cross-validation procedure suggested the best semivariogram model and ordinary kriging was used to obtain the predictions of salinity at unknown locations. The generated map shows clearly the plume dispersion in the studied area, indicating that the effluent does not reach the near by beaches. Our study suggests that an optimal design for the AUV sampling trajectory from a geostatistical prediction point of view, can help to compute more precise predictions and hence to quantify more accurately dilution. Moreover, since accurate measurements of plume’s dilution are rare, these studies might be very helpful in the future for validation of dispersion models.
Resumo:
Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.
Resumo:
Revista Fiscal Maio 2006
Resumo:
This paper deals with the establishment of a characterization methodology of electric power profiles of medium voltage (MV) consumers. The characterization is supported on the data base knowledge discovery process (KDD). Data Mining techniques are used with the purpose of obtaining typical load profiles of MV customers and specific knowledge of their customers’ consumption habits. In order to form the different customers’ classes and to find a set of representative consumption patterns, a hierarchical clustering algorithm and a clustering ensemble combination approach (WEACS) are used. Taking into account the typical consumption profile of the class to which the customers belong, new tariff options were defined and new energy coefficients prices were proposed. Finally, and with the results obtained, the consequences that these will have in the interaction between customer and electric power suppliers are analyzed.
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
With the restructuring of the energy sector in industrialized countries there is an increased complexity in market players’ interactions along with emerging problems and new issues to be addressed. Decision support tools that facilitate the study and understanding of these markets are extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent simulator for competitive electricity markets. It is essential to reinforce MASCEM with the ability to recreate electricity markets reality in the fullest possible extent, making it able to simulate as many types of markets models and players as possible. This paper presents the development of the Balancing Market in MASCEM. A key module to the study of competitive electricity markets, as it has well defined and distinct characteristics previously implemented.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.
Resumo:
This paper describes a methodology that was developed for the classification of Medium Voltage (MV) electricity customers. Starting from a sample of data bases, resulting from a monitoring campaign, Data Mining (DM) techniques are used in order to discover a set of a MV consumer typical load profile and, therefore, to extract knowledge regarding to the electric energy consumption patterns. In first stage, it was applied several hierarchical clustering algorithms and compared the clustering performance among them using adequacy measures. In second stage, a classification model was developed in order to allow classifying new consumers in one of the obtained clusters that had resulted from the previously process. Finally, the interpretation of the discovered knowledge are presented and discussed.
Resumo:
In recent years, Power Systems (PS) have experimented many changes in their operation. The introduction of new players managing Distributed Generation (DG) units, and the existence of new Demand Response (DR) programs make the control of the system a more complex problem and allow a more flexible management. An intelligent resource management in the context of smart grids is of huge important so that smart grids functions are assured. This paper proposes a new methodology to support system operators and/or Virtual Power Players (VPPs) to determine effective and efficient DR programs that can be put into practice. This method is based on the use of data mining techniques applied to a database which is obtained for a large set of operation scenarios. The paper includes a case study based on 27,000 scenarios considering a diversity of distributed resources in a 32 bus distribution network.
Resumo:
In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.