56 resultados para Combinatorial circuits
Resumo:
A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.
Resumo:
Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as GAs. The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO is attractive because there are few parameters to adjust. This paper presents hybridization between a GA algorithm and a PSO algorithm (crossing the two algorithms). The resulting algorithm is applied to the synthesis of combinational logic circuits. With this combination is possible to take advantage of the best features of each particular algorithm.
Resumo:
Swarm Intelligence (SI) is the property of a system whereby the collective behaviors of (unsophisticated) agents interacting locally with their environment cause coherent functional global patterns to emerge. Particle swarm optimization (PSO) is a form of SI, and a population-based search algorithm that is initialized with a population of random solutions, called particles. These particles are flying through hyperspace and have two essential reasoning capabilities: their memory of their own best position and knowledge of the swarm's best position. In a PSO scheme each particle flies through the search space with a velocity that is adjusted dynamically according with its historical behavior. Therefore, the particles have a tendency to fly towards the best search area along the search process. This work proposes a PSO based algorithm for logic circuit synthesis. The results show the statistical characteristics of this algorithm with respect to number of generations required to achieve the solutions. It is also presented a comparison with other two Evolutionary Algorithms, namely Genetic and Memetic Algorithms.
Resumo:
The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.
Resumo:
This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.
Resumo:
To boost logic density and reduce per unit power consumption SRAM-based FPGAs manufacturers adopted nanometric technologies. However, this technology is highly vulnerable to radiation-induced faults, which affect values stored in memory cells, and to manufacturing imperfections. Fault tolerant implementations, based on Triple Modular Redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like module placement, the effects of multi- bit upsets (MBU) or fault accumulation, have also to be addressed. In case of a fault occurrence the correct operation of the affected module must be restored and/or the current state of the circuit coherently re-established. A solution that enables the autonomous restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in real-time, while keeping the normal operation of the circuit, is presented in this paper.
Resumo:
The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.
Resumo:
This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.
Resumo:
This paper analyses the performance of a Genetic Algorithm using two new concepts, namely a static fitness function including a discontinuity measure and a fractional-order dynamic fitness function, for the synthesis of combinational logic circuits. In both cases, experiments reveal superior results in terms of speed and convergence to achieve a solution.
Resumo:
A Computação Evolutiva enquadra-se na área da Inteligência Artificial e é um ramo das ciências da computação que tem vindo a ser aplicado na resolução de problemas em diversas áreas da Engenharia. Este trabalho apresenta o estado da arte da Computação Evolutiva, assim como algumas das suas aplicações no ramo da eletrónica, denominada Eletrónica Evolutiva (ou Hardware Evolutivo), enfatizando a síntese de circuitos digitais combinatórios. Em primeiro lugar apresenta-se a Inteligência Artificial, passando à Computação Evolutiva, nas suas principais vertentes: os Algoritmos Evolutivos baseados no processo da evolução das espécies de Charles Darwin e a Inteligência dos Enxames baseada no comportamento coletivo de alguns animais. No que diz respeito aos Algoritmos Evolutivos, descrevem-se as estratégias evolutivas, a programação genética, a programação evolutiva e com maior ênfase, os Algoritmos Genéticos. Em relação à Inteligência dos Enxames, descreve-se a otimização por colônia de formigas e a otimização por enxame de partículas. Em simultâneo realizou-se também um estudo da Eletrónica Evolutiva, explicando sucintamente algumas das áreas de aplicação, entre elas: a robótica, as FPGA, o roteamento de placas de circuito impresso, a síntese de circuitos digitais e analógicos, as telecomunicações e os controladores. A título de concretizar o estudo efetuado, apresenta-se um caso de estudo da aplicação dos algoritmos genéticos na síntese de circuitos digitais combinatórios, com base na análise e comparação de três referências de autores distintos. Com este estudo foi possível comparar, não só os resultados obtidos por cada um dos autores, mas também a forma como os algoritmos genéticos foram implementados, nomeadamente no que diz respeito aos parâmetros, operadores genéticos utilizados, função de avaliação, implementação em hardware e tipo de codificação do circuito.
Resumo:
This chapter addresses the resolution of scheduling in manufacturing systems subject to perturbations. The planning of Manufacturing Systems involves frequently the resolution of a huge amount and variety of combinatorial optimisation problems with an important impact on the performance of manufacturing organisations. Examples of those problems are the sequencing and scheduling problems in manufacturing management, routing and transportation, layout design and timetabling problems.
Resumo:
Natural gas industry has been confronted with big challenges: great growth in demand, investments on new GSUs – gas supply units, and efficient technical system management. The right number of GSUs, their best location on networks and the optimal allocation to loads is a decision problem that can be formulated as a combinatorial programming problem, with the objective of minimizing system expenses. Our emphasis is on the formulation, interpretation and development of a solution algorithm that will analyze the trade-off between infrastructure investment expenditure and operating system costs. The location model was applied to a 12 node natural gas network, and its effectiveness was tested in five different operating scenarios.
Resumo:
As conexões entre os níveis corticais e sub-corticais na activação da marcha Humana carecem de discussão. As alterações da marcha por lesão no território da Artéria Cerebral Média (ACM) podem ser explicadas pela disfunção de circuitos neuronais dos Núcleos da Base ao córtex e Núcleos Pedúnculo-Pontino. Este trabalho tem como objectivo identificar os percursos anatómicos das principais conexões entre as estruturas encefálicas referidas no território da ACM. Com base na topografia das conexões neuronais, é aceitável que as alterações da marcha sejam explicadas por alterações na função dos Núcleos da Base, através das suas conexões, enquanto moduladores da actividade motora.
Resumo:
The optimal power flow problem has been widely studied in order to improve power systems operation and planning. For real power systems, the problem is formulated as a non-linear and as a large combinatorial problem. The first approaches used to solve this problem were based on mathematical methods which required huge computational efforts. Lately, artificial intelligence techniques, such as metaheuristics based on biological processes, were adopted. Metaheuristics require lower computational resources, which is a clear advantage for addressing the problem in large power systems. This paper proposes a methodology to solve optimal power flow on economic dispatch context using a Simulated Annealing algorithm inspired on the cooling temperature process seen in metallurgy. The main contribution of the proposed method is the specific neighborhood generation according to the optimal power flow problem characteristics. The proposed methodology has been tested with IEEE 6 bus and 30 bus networks. The obtained results are compared with other wellknown methodologies presented in the literature, showing the effectiveness of the proposed method.
Resumo:
To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.