1 resultado para Socialist Systems and Transitional Economies: Performance and Prospects
em Reposit
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (19)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (2)
- Archive of European Integration (83)
- Aston University Research Archive (47)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (23)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (63)
- Central European University - Research Support Scheme (2)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (24)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (106)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (16)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- CUNY Academic Works (5)
- Dalarna University College Electronic Archive (8)
- Department of Computer Science E-Repository - King's College London, Strand, London (6)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (9)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (44)
- Duke University (2)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Galway Mayo Institute of Technology, Ireland (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (19)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (9)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (4)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Produção Científica e Intelectual da Unicamp (1)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (37)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (21)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (5)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (12)
- Université de Lausanne, Switzerland (23)
- Université de Montréal, Canada (2)
- University of Canberra Research Repository - Australia (2)
- University of Innsbruck Digital Library - Austria (1)
- University of Michigan (81)
- University of Queensland eSpace - Australia (37)
- University of Washington (3)
- WestminsterResearch - UK (1)
Resumo:
It is important to understand and forecast a typical or a particularly household daily consumption in order to design and size suitable renewable energy systems and energy storage. In this research for Short Term Load Forecasting (STLF) it has been used Artificial Neural Networks (ANN) and, despite the consumption unpredictability, it has been shown the possibility to forecast the electricity consumption of a household with certainty. The ANNs are recognized to be a potential methodology for modeling hourly and daily energy consumption and load forecasting. Input variables such as apartment area, numbers of occupants, electrical appliance consumption and Boolean inputs as hourly meter system were considered. Furthermore, the investigation carried out aims to define an ANN architecture and a training algorithm in order to achieve a robust model to be used in forecasting energy consumption in a typical household. It was observed that a feed-forward ANN and the Levenberg-Marquardt algorithm provided a good performance. For this research it was used a database with consumption records, logged in 93 real households, in Lisbon, Portugal, between February 2000 and July 2001, including both weekdays and weekend. The results show that the ANN approach provides a reliable model for forecasting household electric energy consumption and load profile. © 2014 The Author.