11 resultados para N-15-nmr Chemical-shifts
em Reposit
Resumo:
Opposite enantiomers exhibit different NMR properties in the presence of an external common chiral element, and a chiral molecule exhibits different NMR properties in the presence of external enantiomeric chiral elements. Automatic prediction of such differences, and comparison with experimental values, leads to the assignment of the absolute configuration. Here two cases are reported, one using a dataset of 80 chiral secondary alcohols esterified with (R)-MTPA and the corresponding 1H NMR chemical shifts and the other with 94 13C NMR chemical shifts of chiral secondary alcohols in two enantiomeric chiral solvents. For the first application, counterpropagation neural networks were trained to predict the sign of the difference between chemical shifts of opposite stereoisomers. The neural networks were trained to process the chirality code of the alcohol as the input, and to give the NMR property as the output. In the second application, similar neural networks were employed, but the property to predict was the difference of chemical shifts in the two enantiomeric solvents. For independent test sets of 20 objects, 100% correct predictions were obtained in both applications concerning the sign of the chemical shifts differences. Additionally, with the second dataset, the difference of chemical shifts in the two enantiomeric solvents was quantitatively predicted, yielding r2 0.936 for the test set between the predicted and experimental values.
Resumo:
The effect of several desilication experimental parameters (base concentration, temperature and time) on the characteristics of MOR zeolite was studied. The samples were characterized by X-ray diffraction, Al-27 and Si-29 MAS-NMR, chemical analysis, and FTIR (framework vibration region). The textural characterization was made by N-2 adsorption and the acidity was evaluated by pyridine adsorption followed by FTIR and by the catalytic model reaction of n-heptane cracking. The alkaline treatments promoted the Si extraction from the zeolite framework, without considerable loss of crystallinity and, as it was envisaged, an important increase of the mesoporous structure was attained. A linear correlation between the number of framework Si per unit cell. N-Si and the asymmetric stretching wavenumber, nu(i), was observed. The acidity characterization shows that the desilicated samples exhibit practically the same acid properties than the parent HMOR zeolite. The optimum desilication conditions were those used to obtain sample M/0.2/85/2, i.e., sample treated with 0.2 M NaOH solution at 85 degrees C for 2 h.
Resumo:
Trends between the Hammett's sigma(p) and related normal sigma(n)(p), inductive sigma(I), resonance sigma(R), negative sigma(-)(p) and positive sigma(+)(p) polar conjugation and Taft's sigma(o)(p) substituent constants and the N-H center dot center dot center dot O distance, delta(N-H) NMR chemical shift, oxidation potential (E-p/2(ox), measured in this study by cyclic voltammetry (CV)) and thermodynamic parameters (pK, Delta G(0), Delta H-0 and Delta S-0) of the dissociation process of unsubstituted 3-(phenylhydrazo)pentane-2,4-dione (HL1) and its para-substituted chloro (HL2), carboxy (HL3), fluoro (HL4) and nitro (HL5) derivatives were recognized. The best fits were found for sigma(p) and/or sigma(-)(p) in the cases of d(N center dot center dot center dot O), delta(N-H) and E-p/2(ox), showing the importance of resonance and conjugation effects in such properties, whereas for the above thermodynamic properties the inductive effects (sigma(I)) are dominant. HL2 exists in the hydrazo form in DMSO solution and in the solid state and contains an intramolecular H-bond with the N center dot center dot center dot O distance of 2.588(3)angstrom. It was also established that the dissociation process of HL1-5 is non-spontaneous, endothermic and entropically unfavourable, and that the increase in the inductive effect (sigma(I)) of para-substitutents (-H < -Cl < -COOH < -F < -NO2) leads to the corresponding growth of the N center dot center dot center dot O distance and decrease of the pK and of the changes of Gibbs free energy, of enthalpy and of entropy for the HL1-5 acid dissociation process. The electrochemical behaviour of HL1-5 was interpreted using theoretical calculations at the DFT/HF hybrid level, namely in terms of HOMO and LUMO compositions, and of reactivities induced by anodic and cathodic electron-transfers. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Deuterium NMR was used to investigate the orientational order in a composite cellulosic formed by liquid crystalline acetoxypropylcellulose (A PC) and demented nematic 4'-penty1-4-cyanobiphenyl (5CB-4 alpha d(2)) with the per centage of 85% A PC by weight Three forms of the composite including electro spun microfibers, thin film and bulk samples were analyzed The NMR results initially suggest two distinct scenarios, one whet e the 503-alpha d(2), is confined to small droplets with dimensions smaller than the magnetic coherence length and the other where the 503-alpha d(2) molecules arc aligned with the A PC network chains Polarized optical microscopy (POW from thin film samples along with all the NMR results show the presence of 5CB-alpha d(2) droplets in the composite systems with a nematic wetting layer at the APC-5CB-alpha d(2) interface that experiences and order disorder transition driven by the polymer network N-I transition The characterization of the APC network I-N transition shows a pronounced subcritical behavior within a heterogeneity scenario.
Resumo:
BACKGROUND: Characterisation of the essential oils from O. glandulosum collected in three locations of Tunisia, chemical composition and the evaluation of their antioxidant activities were carried out. RESULTS: The essential oils from Origanum vulgare L. subsp. glandulosum (Desf.) letswaart collected from three localities of north Tunisia - Krib, Bargou and Nefza - were obtained in yields of 2.5, 3.0 and 4.6% (v/w), respectively. The essential oils were analysed by GC and GC/MS and assayed for their total phenolics content, by the Folin-Ciocalteu method, and antioxidant effectiveness, using the 2,2-diphenyl-1-picrylhydrazil (DPPH) radical scavenging assay. The main components of these essential oils, from Nefza, Bargou and Krib, were p-cymene (36%, 40% and 46%), thymol (32%, 39% and 18%), gamma-terpinene (24%, 12% and 16%) and carvacrol (2%, 2% and 15%), respectively). The ability to scavenge the DPPH radicals, expressed by IC50, ranged from 59 to 80 mg L-1. The total phenolic content, expressed in gallic acid equivalent (GAE) g kg(-1) dry weight, varied from 9.37 to 17.70 g kg(-1) dw. CONCLUSIONS: A correlation was identified between the total phenolic content of the essential oils and DPPH radical scavenger capacity. The occurrence of a p-cymene chemotype of O. glandulosum in the northern region of Tunisia is demonstrated.
Resumo:
Enthalpies of solution of 1-butyl-3-methylimidazolium tetra fluoroborate, [BMIm]BF4, are reported at 298.15 K in a set of 15 hydrogen bond donor and hydrogen bond acceptor solvents, chosen by their diversity, namely, water, methanol, ethanol, 1,2-ethanediol, 2-choroethanol, 2-methoxyethanol, formamide, propylene carbonate, nitromethane, acetonitrile, dimethyl sulfoxide, acetone, N,N-dimethylformamide, N,N-dimethylacetamide, and aniline. These values are shown to be largely independent of [BMIm]BF4 concentration. The obtained enthalpies of solution vary from very endothermic to quite exothermic, thus showing a very high sensitivity of the enthalpies of solution of [BMIm]BF4 to solvent properties. Solvent effects on the solution process of this IL are analyzed by a quantitative structure-property relationship methodology, using the TAKA equation and a modified equation, which significantly improves the model's predictive ability. The observed differences in the enthalpies of solution are rationalized in terms of the solvent properties found to be relevant, that is, pi* and E-T(N).
Resumo:
An atmospheric aerosol study was performed in 2008 inside an urban road tunnel, in Lisbon, Portugal. Using a high volume impactor, the aerosol was collected into four size fractions (PM0.5, PM0.5-1, PM1-2.5 and PM2.5-10) and analysed for particle mass (PM), organic and elemental carbon (OC and EC), polycyclic aromatic hydrocarbons (PAH), soluble inorganic ions and elemental composition. Three main groups of compounds were discriminated in the tunnel aerosol: carbonaceous, soil component and vehicle mechanical wear. Measurements indicate that Cu can be a good tracer for wear emissions of road traffic. Cu levels correlate strongly with Fe, Mn, Sn and Cr, showing a highly linear constant ratio in all size ranges, suggesting a unique origin through sizes. Ratios of Cu with other elements can be used to source apportion the trace elements present in urban atmospheres, mainly on what concerns coarse aerosol particles. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Water-based cellulose cholesteric liquid crystalline phases at rest can undergo structural changes induced by shear flow. This reflects on the deuterium spectra recorded when the system is investigated by rheo-nuclear magnetic resonance (rheo-NMR) techniques. In this work, the model system hydroxypropylcellulose (HPC)+water is revisited using rheo-NMR to clarify unsettled points regarding its behavior under shear and in relaxation. The NMR spectra allow the identification of five different stable ordering states, within shear and relaxation, which are well integrated in a mesoscopic picture of the system's structural evolution under shear and relaxation. This picture emerging from the large body of studies available for this system by other experimental techniques, accounts well for the NMR data and is in good agreement with the three distinct regions of steady shear flow recognized for some lyotropic LC polymers. Shear rates in between 0.1 and 1.0 s(-1) where investigated using a Taylor-Couette flow and deuterated water was used as solvent for the deuterium NMR (DNMR) analysis.
Resumo:
New rhenium(VII or III) complexes [ReO3(PTA)(2)][ReO4] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), [ReO3(mPTA)][ReO4] (2) (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [ReO3(HMT)(2)] [ReO4] (3) (HMT = hexamethylenetetramine), [ReO3(eta(2)-Tpm)(PTA)][ReO4] (4) [Tpm = hydrotris(pyrazol-1-yl)methane, HC(pz)(3), pz = pyrazolyl), [ReO3(Hpz)(HMT)][ReO4] (5) (Hpz = pyrazole), [ReO(Tpms)(HMT)] (6) [Tpms = tris(pyrazol-1-yl)methanesulfonate, O3SC(pz)(3)(-)] and [ReCl2{N2C(O)Ph} (PTA)(3)] (7) have been prepared from the Re(VII) oxide Re2O2 (1-6) or, in the case of 7, by ligand exchange from the benzoyldiazenido complex [ReCl2(N2C-(O)Ph}(Hpz)(PPh3)(2)], and characterized by IR and NMR spectroscopies, elemental analysis and electrochemical properties. Theoretical calculations at the density functional theory (DFT) level of theory indicated that the coordination of PTA to both Re(III) and Re(VII) centers by the P atom is preferable compared to the coordination by the N atom. This is interpreted in terms of the Re-PTA bond energy and hard-soft acid-base theory. The oxo-rhenium complexes 1-6 act as selective catalysts for the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g., 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone, and 3,3-dimethyl-2-butanone or pinacolone) to the corresponding lactones or esters, in the presence of aqueous H2O2. The effects of a variety of factors are studied toward the optimization of the process.
Resumo:
Agência Financiadora - Fundação para a Ciência e Tecnologia - PTDC/CTM NAN/113021/2009
Resumo:
A swift chemical route to synthesize Co-doped SnO2 nanopowders is described. Pure and highly stable Sn1-xCoxO2-delta (0 <= x <= 0.15) crystalline nanoparticles were synthesized, with mean grain sizes <5 nm and the dopant element homogeneously distributed in the SnO2 matrix. The UV-visible diffuse reflectance spectra of the Sn1-xCoxO2-delta samples reveal red shifts, the optical bandgap energies decreasing with increasing Co concentration. The samples' Urbach energies were calculated and correlated with their bandgap energies. The photocatalytic activity of the Sn1-xCoxO2-delta samples was investigated for the 4-hydroxylbenzoic acid (4-HBA) degradation process. A complete photodegradation of a 10 ppm 4-HBA solution was achieved using 0.02% (w/w) of Sn0.95Co0.05O2-delta nanoparticles in 60 min of irradiation. (C) 2014 Elsevier B.V. All rights reserved.