11 resultados para Localization Sequence
em Reposit
Resumo:
Background: With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains underused and are frequently poorly annotated since no user-friendly tool exists to analyze and explore it. Results: PHYLOViZ is platform independent Java software that allows the integrated analysis of sequence-based typing methods, including SNP data generated from whole genome sequence approaches, and associated epidemiological data. goeBURST and its Minimum Spanning Tree expansion are used for visualizing the possible evolutionary relationships between isolates. The results can be displayed as an annotated graph overlaying the query results of any other epidemiological data available. Conclusions: PHYLOViZ is a user-friendly software that allows the combined analysis of multiple data sources for microbial epidemiological and population studies. It is freely available at http://www.phyloviz.net.
Resumo:
Indoor localization systems in nowadays is a huge area of interest not only at academic but also at industry and commercial level. The correct location in these systems is strongly influenced by antennas performance which can provide several gains, bandwidths, polarizations and radiation patterns, due to large variety of antennas types and formats. This paper presents the design, manufacture and measurement of a compact microstrip antenna, for a 2.4 GHZ frequency band, enhanced with the use of Electromagnetic Band-Gap (EBG) structures, which improve the electromagnetic behavior of the conventional antennas. The microstrip antenna with an EBG structure integrated allows an improvement of the location system performance in about 25% to 30% relatively to a conventional microstrip antenna.
Resumo:
We report the sequence of a 9000 bp fragment from the right arm of Saccharomyces cerevisiae chromosome VII. Analysis of the sequence revealed four complete previously unknown open reading frames, which were named G7587, G7589, G7591 and G7594 following standard rules for provisional nomenclature. Outstanding features of some of these proteins were the homology of the putative protein coded by G7589 with proteins involved in transcription regulation and the transmembrane domains predicted in the putative protein coded by G7591.
Resumo:
In the last decade, local image features have been widely used in robot visual localization. To assess image similarity, a strategy exploiting these features compares raw descriptors extracted from the current image to those in the models of places. This paper addresses the ensuing step in this process, where a combining function must be used to aggregate results and assign each place a score. Casting the problem in the multiple classifier systems framework, we compare several candidate combiners with respect to their performance in the visual localization task. A deeper insight into the potential of the sum and product combiners is provided by testing two extensions of these algebraic rules: threshold and weighted modifications. In addition, a voting method, previously used in robot visual localization, is assessed. All combiners are tested on a visual localization task, carried out on a public dataset. It is experimentally demonstrated that the sum rule extensions globally achieve the best performance. The voting method, whilst competitive to the algebraic rules in their standard form, is shown to be outperformed by both their modified versions.
Resumo:
In this paper a new PCA-based positioning sensor and localization system for mobile robots to operate in unstructured environments (e. g. industry, services, domestic ...) is proposed and experimentally validated. The inexpensive positioning system resorts to principal component analysis (PCA) of images acquired by a video camera installed onboard, looking upwards to the ceiling. This solution has the advantage of avoiding the need of selecting and extracting features. The principal components of the acquired images are compared with previously registered images, stored in a reduced onboard image database, and the position measured is fused with odometry data. The optimal estimates of position and slippage are provided by Kalman filters, with global stable error dynamics. The experimental validation reported in this work focuses on the results of a set of experiments carried out in a real environment, where the robot travels along a lawn-mower trajectory. A small position error estimate with bounded co-variance was always observed, for arbitrarily long experiments, and slippage was estimated accurately in real time.
Resumo:
In the field of appearance-based robot localization, the mainstream approach uses a quantized representation of local image features. An alternative strategy is the exploitation of raw feature descriptors, thus avoiding approximations due to quantization. In this work, the quantized and non-quantized representations are compared with respect to their discriminativity, in the context of the robot global localization problem. Having demonstrated the advantages of the non-quantized representation, the paper proposes mechanisms to reduce the computational burden this approach would carry, when applied in its simplest form. This reduction is achieved through a hierarchical strategy which gradually discards candidate locations and by exploring two simplifying assumptions about the training data. The potential of the non-quantized representation is exploited by resorting to the entropy-discriminativity relation. The idea behind this approach is that the non-quantized representation facilitates the assessment of the distinctiveness of features, through the entropy measure. Building on this finding, the robustness of the localization system is enhanced by modulating the importance of features according to the entropy measure. Experimental results support the effectiveness of this approach, as well as the validity of the proposed computation reduction methods.
Resumo:
A pentagonal patch-excited sectorized antenna (SA) suitable for 2.4-2.5 GHz localization systems was studied and developed. The integration of six patch-excited structures converges into a sectorized antenna called Hive5 that provides gain improvement compared to a patch antenna, maximum variation of 3 dB beam width over the radiation pattern and circular polarization (CP). This antenna is presented and analyzed taking into account the tap length and the flare angle. The proposed antenna in combination with a RF-Switch provides a cost effective solution for localization based on Wireless Sensor Networks (WSN) and will be used for implementing angle of arrival (AoA) techniques combined with RF fingerprinting techniques.
Resumo:
In this paper a new method for self-localization of mobile robots, based on a PCA positioning sensor to operate in unstructured environments, is proposed and experimentally validated. The proposed PCA extension is able to perform the eigenvectors computation from a set of signals corrupted by missing data. The sensor package considered in this work contains a 2D depth sensor pointed upwards to the ceiling, providing depth images with missing data. The positioning sensor obtained is then integrated in a Linear Parameter Varying mobile robot model to obtain a self-localization system, based on linear Kalman filters, with globally stable position error estimates. A study consisting in adding synthetic random corrupted data to the captured depth images revealed that this extended PCA technique is able to reconstruct the signals, with improved accuracy. The self-localization system obtained is assessed in unstructured environments and the methodologies are validated even in the case of varying illumination conditions.
Resumo:
In the last decade, local image features have been widely used in robot visual localization. In order to assess image similarity, a strategy exploiting these features compares raw descriptors extracted from the current image with those in the models of places. This paper addresses the ensuing step in this process, where a combining function must be used to aggregate results and assign each place a score. Casting the problem in the multiple classifier systems framework, in this paper we compare several candidate combiners with respect to their performance in the visual localization task. For this evaluation, we selected the most popular methods in the class of non-trained combiners, namely the sum rule and product rule. A deeper insight into the potential of these combiners is provided through a discriminativity analysis involving the algebraic rules and two extensions of these methods: the threshold, as well as the weighted modifications. In addition, a voting method, previously used in robot visual localization, is assessed. Furthermore, we address the process of constructing a model of the environment by describing how the model granularity impacts upon performance. All combiners are tested on a visual localization task, carried out on a public dataset. It is experimentally demonstrated that the sum rule extensions globally achieve the best performance, confirming the general agreement on the robustness of this rule in other classification problems. The voting method, whilst competitive with the product rule in its standard form, is shown to be outperformed by its modified versions.
Resumo:
In this work, we present a teaching-learning sequence on colour intended to a pre-service elementary teacher programme informed by History and Philosophy of Science. Working in a socio-constructivist framework, we made an excursion on the history of colour. Our excursion through history of colour, as well as the reported misconception on colour helps us to inform the constructions of the teaching-learning sequence. We apply a questionnaire both before and after each of the two cycles of action-research in order to assess students’ knowledge evolution on colour and to evaluate our teaching-learning sequence. Finally, we present a discussion on the persistence of deep-rooted alternative conceptions.
Resumo:
The concepts and instruments required for the teaching and learning of geometric optics are introduced in the didactic processwithout a proper didactic transposition. This claim is secured by the ample evidence of both wide- and deep-rooted alternative concepts on the topic. Didactic transposition is a theory that comes from a reflection on the teaching and learning process in mathematics but has been used in other disciplinary fields. It will be used in this work in order to clear up the main obstacles in the teachinglearning process of geometric optics. We proceed to argue that since Newton’s approach to optics, in his Book I of Opticks, is independent of the corpuscular or undulatory nature of light, it is the most suitable for a constructivist learning environment. However, Newton’s theory must be subject to a proper didactic transposition to help overcome the referred alternative concepts. Then is described our didactic transposition in order to create knowledge to be taught using a dialogical process between students’ previous knowledge, history of optics and the desired outcomes on geometrical optics in an elementary pre-service teacher training course. Finally, we use the scheme-facet structure of knowledge both to analyse and discuss our results as well as to illuminate shortcomings that must be addressed in our next stage of the inquiry.