13 resultados para JOINT COMPOSITE INTERVAL MAPPING
em Reposit
Resumo:
Seismic recordings of IRIS/IDA/GSN station CMLA and of several temporary stations in the Azores archipelago are processed with P and S receiver function (PRF and SRF) techniques. Contrary to regional seismic tomography these methods provide estimates of the absolute velocities and of the Vp/Vs ratio up to a depth of similar to 300 km. Joint inversion of PRFs and SRFs for a few data sets consistently reveals a division of the subsurface medium into four zones with a distinctly different Vp/Vs ratio: the crust similar to 20 km thick with a ratio of similar to 1.9 in the lower crust, the high-Vs mantle lid with a strongly reduced VpNs velocity ratio relative to the standard 1.8, the low-velocity zone (LVZ) with a velocity ratio of similar to 2.0, and the underlying upper-mantle layer with a standard velocity ratio. Our estimates of crustal thickness greatly exceed previous estimates (similar to 10 km). The base of the high-Vs lid (the Gutenberg discontinuity) is at a depth of-SO km. The LVZ with a reduction of S velocity of similar to 15% relative to the standard (IASP91) model is terminated at a depth of similar to 200 km. The average thickness of the mantle transition zone (TZ) is evaluated from the time difference between the S410p and SKS660p, seismic phases that are robustly detected in the S and SKS receiver functions. This thickness is practically similar to the standard IASP91 value of 250 km. and is characteristic of a large region of the North Atlantic outside the Azores plateau. Our data are indicative of a reduction of the S-wave velocity of several percent relative to the standard velocity in a depth interval from 460 to 500 km. This reduction is found in the nearest vicinities of the Azores, in the region sampled by the PRFs, but, as evidenced by SRFs, it is missing at a distance of a few hundred kilometers from the islands. We speculate that this anomaly may correspond to the source of a plume which generated the Azores hotspot. Previously, a low S velocity in this depth range was found with SRF techniques beneath a few other hotspots.
Resumo:
In this paper we present a methodology which enables the graphical representation, in a bi-dimensional Euclidean space, of atmospheric pollutants emissions in European countries. This approach relies on the use of Multidimensional Unfolding (MDU), an exploratory multivariate data analysis technique. This technique illustrates both the relationships between the emitted gases and the gases and their geographical origins. The main contribution of this work concerns the evaluation of MDU solutions. We use simulated data to define thresholds for the model fitting measures, allowing the MDU output quality evaluation. The quality assessment of the model adjustment is thus carried out as a step before interpretation of the gas types and geographical origins results. The MDU maps analysis generates useful insights, with an immediate substantive result and enables the formulation of hypotheses for further analysis and modeling.
Resumo:
We have identified an allelic deletion common region in the q26 region of chromosome 10 in endometrial carcinomas, which has been reported previously as a potential target of genetic alterations related to this neoplasia. An allelotyping analysis of 19 pairs of tumoral and non-tumoral samples was accomplished using seven microsatellite polymorphic markers mapping in the 10q26 chromosomal region. Loss of heterozygosity for one or more loci was detected in 29% of the endometrial carcinoma samples. The observed pattern of loss enabled the identification of a 3.5 Mb common deleted region located between the D10S587 and D10S186 markers. An additional result from an endometrial sample with evidence of a RER phenotype may suggest a more centromeric region of loss within the above-mentioned interval. This 401.84 Kb interval flanked by the D10S587 and D10S216 markers may be a plausible location for a putative suppressor gene involved in early stage endometrial carcinogenesis.
Resumo:
The three-dimensional (3D) exact solutions developed in the early 1970s by Pagano for simply supported multilayered orthotropic composite plates and later in the 1990s extended to piezoelectric plates by Heyliger have been extremely useful in the assessment and development of advanced laminated plate theories and related finite element models. In fact, the well-known test cases provided by Pagano and by Heyliger in those earlier works are still used today as benchmark solutions. However, the limited number of test cases whose 3D exact solutions have been published has somewhat restricted the assessment of recent advanced models to the same few test cases. This work aims to provide additional test cases to serve as benchmark exact solutions for the static analysis of multilayered piezoelectric composite plates. The method introduced by Heyliger to derive the 3D exact solutions has been successfully implemented using symbolic computing and a number of new test cases are here presented thoroughly. Specifically, two multilayered plates using PVDF piezoelectric material are selected as test cases under two different loading conditions and considering three plate aspect ratios for thick, moderately thick and thin plate, in a total of 12 distinct test cases. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Laminate composite multi-cell structures have to support both axial and shear stresses when sustaining variable twist. Thus the properties and design of the laminate may not be the most adequate at all cross-sections to support the torsion imposed on the cells. In this work, the effect of some material and geometric parameters on the optimal mechanical behaviour of a multi-cell composite laminate structure is studied when torsion is present. A particle swarm optimization technique is used to maximize the multi-cell structure torsion constant that can be used to obtain the angle of twist of the composite laminate profile.
Resumo:
Magneto-electro-elastic structures are built from materials that provide them the ability to convert in an interchangeable way, magnetic, electric and mechanical forms of energy. This characteristic can therefore provide an adaptive behaviour to a general configuration elastic structure, being commonly used in association with any type of composite material in an embedded or surface mounted mode, or by considering the usage of multiphase materials that enable achieving different magneto-electro-elastic properties. In a first stage of this work, a few cases studies will be considered to enable the validation of the model considered and the influence of the coupling characteristics of this type of adaptive structures. After that we consider the application of a recent computational intelligence technique, the differential evolution, in a deflection profile minimization problem. Studies on the influence of optimization parameters associated to the problem considered will be performed as well as the adoption of an adaptive scheme for the perturbation factor. Results are also compared with those obtained using an enhanced particle swarm optimization technique. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this work, alpha-Co(OH)(2) is electrodeposited onto carbon nanofoam forming a composite electrode operating in a potential window of 2 V in aqueous medium. Prior to electrodeposition, the carbon nanofoam substrate is subjected to a functionalization process, which leads to an increase of about 40% in its specific capacitance value. Formation of cobalt hydroxide clusters onto the functionalized carbon nanofoam by pulse electrodeposition further enhances the specific capacitance of the electrode. The combination of these factors with an enlarged working potential window, results in a material with specific capacitance close to 300 F g(-1) at current density of 1 A g(-1), considering the total mass loading of the composite. This suggests the potential application of the prepared composites in high energy density electrochemical supercapacitors. (c) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this work a biofunctional composite coating architecture for controlled corrosion activity and enhanced cellular adhesion of AZ31 Mg alloys is proposed. The composite coating consists of a polycaprolactone (PCL) matrix modified with nanohydroxyapatite (HA) applied over a nanometric layer of polyetherimide (PEI). The protective properties of the coating were studied by electrochemical impedance spectroscopy (EIS), a non-disturbing technique, and the coating morphology was investigated by field emission scanning electron microscopy (FE-SEM). The results show that the composite coating protects the AZ31 substrate. The barrier properties of the coating can be optimized by changing the PCL concentration. The presence of nanohydroxyapatite particles influences the coating morphology and decreases the corrosion resistance. The biocompatibility was assessed by studying the response of osteoblastic cells on coated samples through resazurin assay, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results show that the polycaprolactone to hydroxyapatite ratio affects the cell behavior and that the presence of hydroxyapatite induces high osteoblastic differentiation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The Chaves basin is a pull-apart tectonic depression implanted on granites, schists, and graywackes, and filled with a sedimentary sequence of variable thickness. It is a rather complex structure, as it includes an intricate network of faults and hydrogeological systems. The topography of the basement of the Chaves basin still remains unclear, as no drill hole has ever intersected the bottom of the sediments, and resistivity surveys suffer from severe equivalence issues resulting from the geological setting. In this work, a joint inversion approach of 1D resistivity and gravity data designed for layered environments is used to combine the consistent spatial distribution of the gravity data with the depth sensitivity of the resistivity data. A comparison between the results from the inversion of each data set individually and the results from the joint inversion show that although the joint inversion has more difficulty adjusting to the observed data, it provides more realistic and geologically meaningful models than the ones calculated by the inversion of each data set individually. This work provides a contribution for a better understanding of the Chaves basin, while using the opportunity to study further both the advantages and difficulties comprising the application of the method of joint inversion of gravity and resistivity data.
Resumo:
This work provides an assessment of layerwise mixed models using least-squares formulation for the coupled electromechanical static analysis of multilayered plates. In agreement with three-dimensional (3D) exact solutions, due to compatibility and equilibrium conditions at the layers interfaces, certain mechanical and electrical variables must fulfill interlaminar C-0 continuity, namely: displacements, in-plane strains, transverse stresses, electric potential, in-plane electric field components and transverse electric displacement (if no potential is imposed between layers). Hence, two layerwise mixed least-squares models are here investigated, with two different sets of chosen independent variables: Model A, developed earlier, fulfills a priori the interiaminar C-0 continuity of all those aforementioned variables, taken as independent variables; Model B, here newly developed, rather reduces the number of independent variables, but also fulfills a priori the interlaminar C-0 continuity of displacements, transverse stresses, electric potential and transverse electric displacement, taken as independent variables. The predictive capabilities of both models are assessed by comparison with 3D exact solutions, considering multilayered piezoelectric composite plates of different aspect ratios, under an applied transverse load or surface potential. It is shown that both models are able to predict an accurate quasi-3D description of the static electromechanical analysis of multilayered plates for all aspect ratios.
Resumo:
The optimal design of laminated sandwich panels with viscoelastic core is addressed in this paper, with the objective of simultaneously minimizing weight and material cost and maximizing modal damping. The design variables are the number of layers in the laminated sandwich panel, the layer constituent materials and orientation angles and the viscoelastic layer thickness. The problem is solved using the Direct MultiSearch (DMS) solver for multiobjective optimization problems which does not use any derivatives of the objective functions. A finite element model for sandwich plates with transversely compressible viscoelastic core and anisotropic laminated face layers is used. Trade-off Pareto optimal fronts are obtained and the results are analyzed and discussed.
Resumo:
The bending of simply supported composite plates is analyzed using a direct collocation meshless numerical method. In order to optimize node distribution the Direct MultiSearch (DMS) for multi-objective optimization method is applied. In addition, the method optimizes the shape parameter in radial basis functions. The optimization algorithm was able to find good solutions for a large variety of nodes distribution.
Resumo:
Electrochemically-reduced graphene oxide (Er-GO) and cobalt oxides (CoOx) were co-electrodeposited by cyclic voltammetry, from an electrolyte containing graphene oxide and cobalt nitrate, directly onto a stainless steel substrate to produce composite electrodes presenting high charge storage capacity. The electrochemical response of the composite films was optimized by studying the parameters applied during the electrodeposition process, namely the number of cycles, scan rate and ratio between GO/Co(NO3)(2) concentrations in the electrolyte. It is shown that, if the appropriate conditions are selected, it is possible to produced binder-free composite electrodes with improved electrochemical properties using a low-cost, facile and scalable technique. The optimized Er-GO/CoOx developed in this work exhibits a specific capacitance of 608 F g(-1) at a current density of 1 A g(-1) and increased reversibility when compared to single CoOx. (C) 2015 Elsevier B.V. All rights reserved.