12 resultados para Collaborative learning flow pattern
em Reposit
Resumo:
The localization of magma melting areas at the lithosphere bottom in extensional volcanic domains is poorly understood. Large polygenetic volcanoes of long duration and their associated magma chambers suggest that melting at depth may be focused at specific points within the mantle. To validate the hypothesis that the magma feeding a mafic crust, comes from permanent localized crustal reservoirs, it is necessary to map the fossilized magma flow within the crustal planar intrusions. Using the AMS, we obtain magmatic flow vectors from 34 alkaline basaltic dykes from São Jorge, São Miguel and Santa Maria islands in the Azores Archipelago, a hot-spot related triple junction. The dykes contain titanomagnetite showing a wide spectrum of solid solution ranging from Ti-rich to Ti-poor compositions with vestiges of maghemitization. Most of the dykes exhibit a normal magnetic fabric. The orientation of the magnetic lineation k1 axis is more variable than that of the k3 axis, which is generally well grouped. The dykes of São Jorge and São Miguel show a predominance of subhorizontal magmatic flows. In Santa Maria the deduced flow pattern is less systematic changing from subhorizontal in the southern part of the island to oblique in north. These results suggest that the ascent of magma beneath the islands of Azores is predominantly over localized melting sources and then collected within shallow magma chambers. According to this concept, dykes in the upper levels of the crust propagate laterally away from these magma chambers thus feeding the lava flows observed at the surface.
Resumo:
Feature selection is a central problem in machine learning and pattern recognition. On large datasets (in terms of dimension and/or number of instances), using search-based or wrapper techniques can be cornputationally prohibitive. Moreover, many filter methods based on relevance/redundancy assessment also take a prohibitively long time on high-dimensional. datasets. In this paper, we propose efficient unsupervised and supervised feature selection/ranking filters for high-dimensional datasets. These methods use low-complexity relevance and redundancy criteria, applicable to supervised, semi-supervised, and unsupervised learning, being able to act as pre-processors for computationally intensive methods to focus their attention on smaller subsets of promising features. The experimental results, with up to 10(5) features, show the time efficiency of our methods, with lower generalization error than state-of-the-art techniques, while being dramatically simpler and faster.
Resumo:
Feature discretization (FD) techniques often yield adequate and compact representations of the data, suitable for machine learning and pattern recognition problems. These representations usually decrease the training time, yielding higher classification accuracy while allowing for humans to better understand and visualize the data, as compared to the use of the original features. This paper proposes two new FD techniques. The first one is based on the well-known Linde-Buzo-Gray quantization algorithm, coupled with a relevance criterion, being able perform unsupervised, supervised, or semi-supervised discretization. The second technique works in supervised mode, being based on the maximization of the mutual information between each discrete feature and the class label. Our experimental results on standard benchmark datasets show that these techniques scale up to high-dimensional data, attaining in many cases better accuracy than existing unsupervised and supervised FD approaches, while using fewer discretization intervals.
Resumo:
In machine learning and pattern recognition tasks, the use of feature discretization techniques may have several advantages. The discretized features may hold enough information for the learning task at hand, while ignoring minor fluctuations that are irrelevant or harmful for that task. The discretized features have more compact representations that may yield both better accuracy and lower training time, as compared to the use of the original features. However, in many cases, mainly with medium and high-dimensional data, the large number of features usually implies that there is some redundancy among them. Thus, we may further apply feature selection (FS) techniques on the discrete data, keeping the most relevant features, while discarding the irrelevant and redundant ones. In this paper, we propose relevance and redundancy criteria for supervised feature selection techniques on discrete data. These criteria are applied to the bin-class histograms of the discrete features. The experimental results, on public benchmark data, show that the proposed criteria can achieve better accuracy than widely used relevance and redundancy criteria, such as mutual information and the Fisher ratio.
Resumo:
Conferência anual da ISME
Resumo:
As teachers, we are challenged everyday to solve pedagogical problems and we have to fight for our students’ attention in a media rich world. I will talk about how we use ICT in Initial Teacher Training and give you some insight on what we are doing. The most important benefit of using ICT in education is that it makes us reflect on our practice. There is no doubt that our classrooms need to be updated, but we need to be critical about every peace of hardware, software or service that we bring into them. It is not only because our budgets are short, but also because e‐learning is primarily about learning, not technology. Therefore, we need to have the knowledge and skills required to act in different situations, and choose the best tool for the job. Not all subjects are suitable for e‐learning, nor do all students have the skills to organize themselves their own study times. Also not all teachers want to spend time programming or learning about instructional design and metadata. The promised land of easy use of authoring tools (e.g. eXe and Reload) that will lead to all teachers become Learning Objects authors and share these LO in Repositories, all this failed, like previously HyperCard, Toolbook and others. We need to know a little bit of many different technologies so we can mobilize this knowledge when a situation requires it: integrate e‐learning technologies in the classroom, not a flipped classroom, just simple tools. Lecture capture, mobile phones and smartphones, pocket size camcorders, VoIP, VLE, live video broadcast, screen sharing, free services for collaborative work, save, share and sync your files. Do not feel stressed to use everything, every time. Just because we have a whiteboard does not mean we have to make it the centre of the classroom. Start from where you are, with your preferred subject and the tools you master. Them go slowly and try some new tool in a non‐formal situation and with just one or two students. And you don’t need to be alone: subscribe a mailing list and share your thoughts with other teachers in a dedicated forum, even better if both are part of a community of practice, and share resources. We did that for music teachers and it was a success, in two years arriving at 1.000 members. Just do it.
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Políticas de Administração e Gestão de Serviços de Saúde.
Resumo:
Integrated manufacturing constitutes a complex system made of heterogeneous information and control subsystems. Those subsystems are not designed to the cooperation. Typically each subsystem automates specific processes, and establishes closed application domains, therefore it is very difficult to integrate it with other subsystems in order to respond to the needed process dynamics. Furthermore, to cope with ever growing marketcompetition and demands, it is necessary for manufacturing/enterprise systems to increase their responsiveness based on up-to-date knowledge and in-time data gathered from the diverse information and control systems. These have created new challenges for manufacturing sector, and even bigger challenges for collaborative manufacturing. The growing complexity of the information and communication technologies when coping with innovative business services based on collaborative contributions from multiple stakeholders, requires novel and multidisciplinary approaches. Service orientation is a strategic approach to deal with such complexity, and various stakeholders' information systems. Services or more precisely the autonomous computational agents implementing the services, provide an architectural pattern able to cope with the needs of integrated and distributed collaborative solutions. This paper proposes a service-oriented framework, aiming to support a virtual organizations breeding environment that is the basis for establishing short or long term goal-oriented virtual organizations. The notion of integrated business services, where customers receive some value developed through the contribution from a network of companies is a key element.
Resumo:
Microbial adhesion is a field of recognized relevance and, as such, an impressive array of tools has been developed to understand its molecular mechanisms and ultimately for its quantification. Some of the major limitations found within these methodologies concern the incubation time, the small number of cells analyzed, and the operator's subjectivity. To overcome these aspects, we have developed a quantitative method to measure yeast cells' adhesion through flow cytometry. In this methodology, a suspension of yeast cells is mixed with green fluorescent polystyrene microspheres (uncoated or coated with host proteins). Within 2 h, an adhesion profile is obtained based on two parameters: percentage and cells-microsphere population's distribution pattern. This flow cytometry protocol represents a useful tool to quantify yeast adhesion to different substrata in a large scale, providing manifold data in a speedy and informative manner.
Resumo:
Although the computational power of mobile devices has been increasing, it is still not enough for some classes of applications. In the present, these applications delegate the computing power burden on servers located on the Internet. This model assumes an always-on Internet connectivity and implies a non-negligible latency. The thesis addresses the challenges and contributions posed to the application of a mobile collaborative computing environment concept to wireless networks. The goal is to define a reference architecture for high performance mobile applications. Current work is focused on efficient data dissemination on a highly transitive environment, suitable to many mobile applications and also to the reputation and incentive system available on this mobile collaborative computing environment. For this we are improving our already published reputation/incentive algorithm with knowledge from the usage pattern from the eduroam wireless network in the Lisbon area.
Resumo:
This paper addresses the estimation of object boundaries from a set of 3D points. An extension of the constrained clustering algorithm developed by Abrantes and Marques in the context of edge linking is presented. The object surface is approximated using rectangular meshes and simplex nets. Centroid-based forces are used for attracting the model nodes towards the data, using competitive learning methods. It is shown that competitive learning improves the model performance in the presence of concavities and allows to discriminate close surfaces. The proposed model is evaluated using synthetic data and medical images (MRI and ultrasound images).
Resumo:
Purpose: To describe orthoptic student satisfaction in a blended learning environment. Methods: Blended learning and teaching approaches that include a mix of sessions with elearning are being used since 2011/2012 involving final year (4th year) students from an orthoptic program. This approach is used in the module of research in orthoptics during the 1 semester. Students experienced different teaching approaches, which include seminars, tutorial group discussions and e-learning activities using the moodle platform. The Constructivist OnLine Learning Environment Survey (COLLES ) was applied at the end of the semester with 24 questions grouped in 6 dimensions with 4 items each: Relevance to professional practice, Reflection, Interactivity, Tutor support, Peer support and Interpretation. A 5-point Likert scale was used to score each individual item of the questionnaire (1 - almost never to 5 – almost always). The sum of items in each dimension ranged between 4 (negative perception) and 20 (positive perception). Results: Twenty-four students replied to the questionnaire. Positive points were related with Relevance (16.13±2.63), Reflection (16.46±2.45), Tutor support (16.29±2.10) and Interpretation (15.38±2.16). The majority of the students (n=18; 75%) think that the on-line learning is relevant to students’ professional practice. Critical reflections about learning contents were frequent (n=19; 79.17%). The tutor was able to stimulate critical thinking (n=21; 87.50%), encouraged students to participate (n=18; 75%) and understood well the student’s contributions (n=15; 62.50%). Less positive points were related with Interactivity (14.13±2.77) and Peer support (13.29±2.60). Response from the colleagues to ideas (n=11; 45.83%) and valorization of individual contributions (n=10; 41.67%) scored lower than other items. Conclusions: The flow back and forth between face-to-face and online learning situations helps the students to make critical reflections. The majority of the students are satisfied with a blended e-learning system environment. However, more work needs to be done to improve interactivity and peer support.