6 resultados para virus assembly model

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We calculate the equilibrium thermodynamic properties, percolation threshold, and cluster distribution functions for a model of associating colloids, which consists of hard spherical particles having on their surfaces three short-ranged attractive sites (sticky spots) of two different types, A and B. The thermodynamic properties are calculated using Wertheim's perturbation theory of associating fluids. This also allows us to find the onset of self-assembly, which can be quantified by the maxima of the specific heat at constant volume. The percolation threshold is derived, under the no-loop assumption, for the correlated bond model: In all cases it is two percolated phases that become identical at a critical point, when one exists. Finally, the cluster size distributions are calculated by mapping the model onto an effective model, characterized by a-state-dependent-functionality (f) over bar and unique bonding probability (p) over bar. The mapping is based on the asymptotic limit of the cluster distributions functions of the generic model and the effective parameters are defined through the requirement that the equilibrium cluster distributions of the true and effective models have the same number-averaged and weight-averaged sizes at all densities and temperatures. We also study the model numerically in the case where BB interactions are missing. In this limit, AB bonds either provide branching between A-chains (Y-junctions) if epsilon(AB)/epsilon(AA) is small, or drive the formation of a hyperbranched polymer if epsilon(AB)/epsilon(AA) is large. We find that the theoretical predictions describe quite accurately the numerical data, especially in the region where Y-junctions are present. There is fairly good agreement between theoretical and numerical results both for the thermodynamic (number of bonds and phase coexistence) and the connectivity properties of the model (cluster size distributions and percolation locus).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a model consisting of particles with dissimilar bonding sites ("patches"), which exhibits self-assembly into chains connected by Y-junctions, and investigate its phase behaviour by both simulations and theory. We show that, as the energy cost epsilon(j) of forming Y-junctions increases, the extent of the liquid-vapour coexistence region at lower temperatures and densities is reduced. The phase diagram thus acquires a characteristic "pinched" shape in which the liquid branch density decreases as the temperature is lowered. To our knowledge, this is the first model in which the predicted topological phase transition between a fluid composed of short chains and a fluid rich in Y-junctions is actually observed. Above a certain threshold for epsilon(j), condensation ceases to exist because the entropy gain of forming Y-junctions can no longer offset their energy cost. We also show that the properties of these phase diagrams can be understood in terms of a temperature-dependent effective valence of the patchy particles. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605703]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agências financiadoras: FCT - PEstOE/FIS/UI0618/2011; PTDC/FIS/098254/2008 ERC-PATCHYCOLLOIDS e MIUR-PRIN

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the structural and thermodynamic properties of a model of particles with 2 patches of type A and 10 patches of type B. Particles are placed on the sites of a face centered cubic lattice with the patches oriented along the nearest neighbor directions. The competition between the self- assembly of chains, rings, and networks on the phase diagram is investigated by carrying out a systematic investigation of this class of models, using an extension ofWertheim's theory for associating fluids and Monte Carlo numerical simulations. We varied the ratio r epsilon(AB)/epsilon(AA) of the interaction between patches A and B, epsilon(AB), and between A patches, epsilon(AA) (epsilon(BB) is set to theta) as well as the relative position of the A patches, i.e., the angle. between the (lattice) directions of the A patches. We found that both r and theta (60 degrees, 90 degrees, or 120 degrees) have a profound effect on the phase diagram. In the empty fluid regime (r < 1/2) the phase diagram is reentrant with a closed miscibility loop. The region around the lower critical point exhibits unusual structural and thermodynamic behavior determined by the presence of relatively short rings. The agreement between the results of theory and simulation is excellent for theta = 120 degrees but deteriorates as. decreases, revealing the need for new theoretical approaches to describe the structure and thermodynamics of systems dominated by small rings. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We numerically study a simple fluid composed of particles having a hard-core repulsion complemented by two patchy attractive sites on the particle poles. An appropriate choice of the patch angular width allows for the formation of ring structures which, at low temperatures and low densities, compete with the growth of linear aggregates. The simplicity of the model makes it possible to compare simulation results and theoretical predictions based on the Wertheim perturbation theory, specialized to the case in which ring formation is allowed. Such a comparison offers a unique framework for establishing the quality of the analytic predictions. We find that the Wertheim theory describes remarkably well the simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We generalize Wertheim's first order perturbation theory to account for the effect in the thermodynamics of the self-assembly of rings characterized by two energy scales. The theory is applied to a lattice model of patchy particles and tested against Monte Carlo simulations on a fcc lattice. These particles have 2 patches of type A and 10 patches of type B, which may form bonds AA or AB that decrease the energy by epsilon(AA) and by epsilon(AB) = r epsilon(AA), respectively. The angle theta between the 2 A-patches on each particle is fixed at 601, 90 degrees or 120 degrees. For values of r below 1/2 and above a threshold r(th)(theta) the models exhibit a phase diagram with two critical points. Both theory and simulation predict that rth increases when theta decreases. We show that the mechanism that prevents phase separation for models with decreasing values of theta is related to the formation of loops containing AB bonds. Moreover, we show that by including the free energy of B-rings ( loops containing one AB bond), the theory describes the trends observed in the simulation results, but that for the lowest values of theta, the theoretical description deteriorates due to the increasing number of loops containing more than one AB bond.