4 resultados para total head pressure
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Introduction: Pressure ulcers are a high cost, high volume issue for health and medical care providers, affecting patients’ recovery and psychological wellbeing. The current research of support surfaces on pressure as a risk factor in the development of pressure ulcers is not relevant to the specialised, controlled environment of the radiological setting. Method: 38 healthy participants aged 19-51 were placed supine on two different imaging surfaces. The XSENSOR pressure mapping system was used to measure the interface pressure. Data was acquired over a time of 20 minutes preceded by 6 minutes settling time to reduce measurement error. Qualitative information regarding participants’ opinion on pain and comfort was recorded using a questionnaire. Data analysis was performed using SPSS 22. Results: Data was collected from 30 participants aged 19 to 51 (mean 25.77, SD 7.72), BMI from 18.7 to 33.6 (mean 24.12, SD 3.29), for two surfaces, following eight participant exclusions due to technical faults. Total average pressure, average pressure for jeopardy areas (head, sacrum & heels) and peak pressure for jeopardy areas were calculated as interface pressure in mmHg. Qualitative data showed that a significant difference in experiences of comfort and pain was found in the jeopardy areas (P<0.05) between the two surfaces. Conclusion: A significant difference is seen in average pressure between the two surfaces. Pain and comfort data also show a significant difference between the surfaces, both findings support the proposal for further investigation into the effects of radiological surfaces as a risk factor for the formation of pressure ulcers.
Resumo:
We have performed Surface Evolver simulations of two-dimensional hexagonal bubble clusters consisting of a central bubble of area lambda surrounded by s shells or layers of bubbles of unit area. Clusters of up to twenty layers have been simulated, with lambda varying between 0.01 and 100. In monodisperse clusters (i.e., for lambda = 1) [M.A. Fortes, F Morgan, M. Fatima Vaz, Philos. Mag. Lett. 87 (2007) 561] both the average pressure of the entire Cluster and the pressure in the central bubble are decreasing functions of s and approach 0.9306 for very large s, which is the pressure in a bubble of an infinite monodisperse honeycomb foam. Here we address the effect of changing the central bubble area lambda. For small lambda the pressure in the central bubble and the average pressure were both found to decrease with s, as in monodisperse clusters. However, for large,, the pressure in the central bubble and the average pressure increase with s. The average pressure of large clusters was found to be independent of lambda and to approach 0.9306 asymptotically. We have also determined the cluster surface energies given by the equation of equilibrium for the total energy in terms of the area and the pressure in each bubble. When the pressures in the bubbles are not available, an approximate equation derived by Vaz et al. [M. Fatima Vaz, M.A. Fortes, F. Graner, Philos. Mag. Lett. 82 (2002) 575] was shown to provide good estimations for the cluster energy provided the bubble area distribution is narrow. This approach does not take cluster topology into account. Using this approximate equation, we find a good correlation between Surface Evolver Simulations and the estimated Values of energies and pressures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Susceptibility Weighted Image (SWI) is a Magnetic Resonance Imaging (MRI) technique that combines high spatial resolution and sensitivity to provide magnetic susceptibility differences between tissues. It is extremely sensitive to venous blood due to its iron content of deoxyhemoglobin. The aim of this study was to evaluate, through the SWI technique, the differences in cerebral venous vasculature according to the variation of blood pressure values. 20 subjects divided in two groups (10 hypertensive and 10 normotensive patients) underwent a MRI system with a Siemens® scanner model Avanto of 1.5T using a synergy head coil (4 channels). The obtained sequences were T1w, T2w-FLAIR, T2* and SWI. The value of Contrast-to-Noise Ratio (CNR) was assessed in MinIP (Minimum Intensity Projection) and Magnitude images, through drawing free hand ROIs in venous structures: Superior Sagittal Sinus (SSS) Internal Cerebral Vein (ICV) and Sinus Confluence (SC). The obtained values were presented in descriptive statistics-quartiles and extremes diagrams. The results were compared between groups. CNR shown higher values for normotensive group in MinIP (108.89 ± 6.907) to ICV; (238.73 ± 18.556) to SC and (239.384 ± 52.303) to SSS. These values are bigger than images from Hypertensive group about 46 a.u. in average. Comparing the results of Magnitude and MinIP images, there were obtained lower CNR values for the hypertensive group. There were differences in the CNR values between both groups, being these values more expressive in the large vessels-SSS and SC. The SWI is a potential technique to evaluate and characterize the blood pressure variation in the studied vessels adding a physiological perspective to MRI and giving a new approach to the radiological vascular studies.
Resumo:
Purpose: Pressure ulcers are a high cost, high volume issue for health and medical care providers, having a detrimental effect on patients and relatives. Pressure ulcer prevention is widely covered in the literature, but little has been published regarding the risk to patients in the radiographical setting. This review of the current literature is to identify findings relevant to radiographical context. Methods: Literature searching was performed using Science Direct and Medline databases. The search was limited to articles published in the last ten years to remain current and excluded studies containing participants less than 17 years of age. In total 14 studies were acquired; three were excluded as they were not relevant. The remaining 11 studies were compared and reviewed. Discussion: Eight of the studies used ‘healthy’ participants and three used symptomatic participants. Nine studies explored interface pressure with a range of pressure mat technologies, two studies measured shear (MRI finite element modelling, and a non-invasive instrument), and one looked at blood flow and haemoglobin oxygenation. A range of surfaces were considered from trauma, nursing and surgical backgrounds for their ability to reduce pressure including standard mattresses, high specification mattresses, rigid and soft layer spine boards, various overlays (gel, air filled, foam). Conclusion: The current literature is not appropriate for the radiographic patient and cannot be extrapolated to a radiologic context. Sufficient evidence is presented in this review to support the need for further work specific to radiography in order to minimise the development of PU in at risk patients.