4 resultados para tissue degeneration
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Introdução – A diabetes é uma das maiores epidemias do último século. Mais de 250 milhões de pessoas, em todo o mundo, sofrem de diabetes. Das complicações derivadas da diabetes são as principais causas de cegueira, de insuficiência renal e de amputação de membros inferiores, derivando estes, predominantemente, da disfunção vascular. Quando surge perda de pericitos na parede vascular ocorrem uma série de alterações da microcirculação que levam ao aparecimento de microaneurismas e outras alterações vasculares que possibilitam a passagem de componentes sanguíneos para o tecido retiniano adjacente que, em situação de normalidade, não ocorreriam, sendo esta uma das causas do edema macular exsudativo diabético. A perimetria de hiperacuidade preferencial (PHP) é um teste psicofísico que pretende detetar metamorfopsias na Degenerescência Macular ligada à Idade (DMI). Uma vez que o edema macular diabético (EMD) se destaca como uma das principais causas de deficiência visual e baixa visão, pretende-se verificar a eficácia do PHP no estudo do edema macular diabético, respondendo à seguinte questão: “Qual a capacidade do perímetro de hiperacuidade preferencial em detetar metamorfopsias em pacientes com edema macular diabético?“ Metodologia – Estudo quantitativo, do tipo descritivo e correlacional. Selecionou-se uma amostra de 33 pacientes, onde se analisou um total de 60 olhos. Resultados – A sensibilidade do PHP na deteção de metamorfopsias associadas ao EMD na tomografia de coerência ótica (OCT) foi de 70,6%, a especificidade foi de 11,5% e a eficiência global do teste de 45%. Comparando os resultados encontrados no PHP e no OCT, constatou-se a existência de uma correlação inversa fraca (Phi = -0,215). Conclusões – Este novo método de diagnóstico revela-se sensível, contudo pouco específico e eficaz na deteção de metamorfopsias consequentes da existência de EMD. - ABSTRACT - Introduction – Preferential hyperacuity perimeter (PHP) is a new psychophysical test, which principle is based on the detection of metamorphopsia in age-related macular degeneration (AMD). It is intended to verify its effectiveness in the study of diabetic macular edema (DME). When there is loss of pericytes in the vascular wall occur a number of microcirculatory changes that lead to the appearance of microaneurysms and other vascular changes that allow the passage of blood components to the surrounding retinal tissue than in normal situation does not occur, this being one of the causes exudative diabetic macular edema. Methodology – It was performed a quantitative study, using descriptive and correlational analysis. A sample of 33 patients was selected, and 60 eyes were analyzed. Results – The sensitivity of PHP on the detection of metamorphopsia associated to EMD was 70.6%, the specificity was 11.5% and the global efficiency of the test was 45%. It was found a weak negative correlation (Phi= -0.215) between the PHP and optical coherence tomography (OCT). Conclusions – This new method of diagnosis was sensitive, but not very specific and effective on the detection of metamorphopsia, due to the DME.
Resumo:
Liver steatosis is mainly a textural abnormality of the hepatic parenchyma due to fat accumulation on the hepatic vesicles. Today, the assessment is subjectively performed by visual inspection. Here a classifier based on features extracted from ultrasound (US) images is described for the automatic diagnostic of this phatology. The proposed algorithm estimates the original ultrasound radio-frequency (RF) envelope signal from which the noiseless anatomic information and the textural information encoded in the speckle noise is extracted. The features characterizing the textural information are the coefficients of the first order autoregressive model that describes the speckle field. A binary Bayesian classifier was implemented and the Bayes factor was calculated. The classification has revealed an overall accuracy of 100%. The Bayes factor could be helpful in the graphical display of the quantitative results for diagnosis purposes.
Resumo:
Aim - To use Monte Carlo (MC) together with voxel phantoms to analyze the tissue heterogeneity effect in the dose distributions and equivalent uniform dose (EUD) for (125)I prostate implants. Background - Dose distribution calculations in low dose-rate brachytherapy are based on the dose deposition around a single source in a water phantom. This formalism does not take into account tissue heterogeneities, interseed attenuation, or finite patient dimensions effects. Tissue composition is especially important due to the photoelectric effect. Materials and Methods - The computed tomographies (CT) of two patients with prostate cancer were used to create voxel phantoms for the MC simulations. An elemental composition and density were assigned to each structure. Densities of the prostate, vesicles, rectum and bladder were determined through the CT electronic densities of 100 patients. The same simulations were performed considering the same phantom as pure water. Results were compared via dose-volume histograms and EUD for the prostate and rectum. Results - The mean absorbed doses presented deviations of 3.3-4.0% for the prostate and of 2.3-4.9% for the rectum, when comparing calculations in water with calculations in the heterogeneous phantom. In the calculations in water, the prostate D 90 was overestimated by 2.8-3.9% and the rectum D 0.1cc resulted in dose differences of 6-8%. The EUD resulted in an overestimation of 3.5-3.7% for the prostate and of 7.7-8.3% for the rectum. Conclusions - The deposited dose was consistently overestimated for the simulation in water. In order to increase the accuracy in the determination of dose distributions, especially around the rectum, the introduction of the model-based algorithms is recommended.
Resumo:
The MCNPX code was used to calculate the TG-43U1 recommended parameters in water and prostate tissue in order to quantify the dosimetric impact in 30 patients treated with (125)I prostate implants when replacing the TG-43U1 formalism parameters calculated in water by a prostate-like medium in the planning system (PS) and to evaluate the uncertainties associated with Monte Carlo (MC) calculations. The prostate density was obtained from the CT of 100 patients with prostate cancer. The deviations between our results for water and the TG-43U1 consensus dataset values were -2.6% for prostate V100, -13.0% for V150, and -5.8% for D90; -2.0% for rectum V100, and -5.1% for D0.1; -5.0% for urethra D10, and -5.1% for D30. The same differences between our water and prostate results were all under 0.3%. Uncertainties estimations were up to 2.9% for the gL(r) function, 13.4% for the F(r,θ) function and 7.0% for Λ, mainly due to seed geometry uncertainties. Uncertainties in extracting the TG-43U1 parameters in the MC simulations as well as in the literature comparison are of the same order of magnitude as the differences between dose distributions computed for water and prostate-like medium. The selection of the parameters for the PS should be done carefully, as it may considerably affect the dose distributions. The seeds internal geometry uncertainties are a major limiting factor in the MC parameters deduction.