37 resultados para three-tier architecture
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
A oferta de serviços baseados em comunicações sem fios tem vindo a crescer exponencialmente na última década. Cada vez mais são exigidas maiores taxas de transmissão assim como uma melhor QoS, sem comprometer a potência de transmissão ou argura de banda disponível. A tecnologia MIMO consegue oferecer um aumento da capacidade destes sistemas sem requerer aumento da largura de banda ou da potência transmitida. O trabalho desenvolvido nesta dissertação consistiu no estudo dos sistemas MIMO, caracterizados pela utilização de múltiplas antenas para transmitir e receber a informação. Com um sistema deste tipo consegue-se obter um ganho de diversidade espacial utilizando códigos espaço-temporais, que exploram simultaneamente o domínio espacial e o domínio do tempo. Nesta dissertação é dado especial ênfase à codificação por blocos no espaço-tempo de Alamouti, a qual será implementada em FPGA, nomeadamente a parte de recepção. Esta implementação é efectuada para uma configuração de antenas 2x1, utilizando vírgula flutuante e para três tipos de modulação: BPSK, QPSK e 16-QAM. Por fim será analisada a relação entre a precisão alcançada na representação numérica dos resultados e os recursos consumidos pela FPGA. Com a arquitectura adoptada conseguem se obter taxas de transferência na ordem dos 29,141 Msimb/s (sem pipelines) a 262,674 Msimb/s (com pipelines), para a modulação BPSK.
Resumo:
In this review paper different designs based on stacked p-i'-n-p-i-n heterojunctions are presented and compared with the single p-i-n sensing structures. The imagers utilise self-field induced depletion layers for light detection and a modulated laser beam for sequential readout. The effect of the sensing element structure, cell configurations (single or tandem), and light source properties (intensity and wavelength) are correlated with the sensor output characteristics (light-to-dark sensivity, spatial resolution, linearity and S/N ratio). The readout frequency is optimized showing that scans speeds up to 104 lines per second can be achieved without degradation in the resolution. Multilayered p-i'-n-p-i-n heterostructures can also be used as wavelength-division multiplexing /demultiplexing devices in the visible range. Here the sensor element faces the modulated light from different input colour channels, each one with a specific wavelength and bit rate. By reading out the photocurrent at appropriated applied bias, the information is multiplexed or demultiplexed and can be transmitted or recovered again. Electrical models are present to support the sensing methodologies.
Resumo:
Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.
Resumo:
A new high throughput and scalable architecture for unified transform coding in H.264/AVC is proposed in this paper. Such flexible structure is capable of computing all the 4x4 and 2x2 transforms for Ultra High Definition Video (UHDV) applications (4320x7680@ 30fps) in real-time and with low hardware cost. These significantly high performance levels were proven with the implementation of several different configurations of the proposed structure using both FPGA and ASIC 90 nm technologies. In addition, such experimental evaluation also demonstrated the high area efficiency of theproposed architecture, which in terms of Data Throughput per Unit of Area (DTUA) is at least 1.5 times more efficient than its more prominent related designs(1).
Resumo:
Solubility measurements of quinizarin. (1,4-dihydroxyanthraquinone), disperse red 9 (1-(methylamino) anthraquinone), and disperse blue 14 (1,4-bis(methylamino)anthraquinone) in supercritical carbon dioxide (SC CO2) were carried out in a flow type apparatus, at a temperature range from (333.2 to 393.2) K and at pressures from (12.0 to 40.0) MPa. Mole fraction solubility of the three dyes decreases in the order quinizarin (2.9 x 10(-6) to 2.9.10(-4)), red 9 (1.4 x 10(-6) to 3.2 x 10(-4)), and blue 14 (7.8 x 10(-8) to 2.2 x 10(-5)). Four semiempirical density based models were used to correlatethe solubility of the dyes in the SC CO2. From the correlation results, the total heat of reaction, heat of vaporization plus the heat of solvation of the solute, were calculated and compared with the results presented in the literature. The solubilities of the three dyes were correlated also applying the Soave-Redlich-Kwong cubic equation of state (SRK CEoS) with classical mixing rules, and the physical properties required for the modeling were estimated and reported.
Resumo:
Mestrado em Intervenção Sócio-Organizacional na Saúde - Área de especialização: Qualidade e Tecnologias da Saúde.
Resumo:
The phase diagram of a simple model with two patches of type A and ten patches of type B (2A10B) on the face centred cubic lattice has been calculated by simulations and theory. Assuming that there is no interaction between the B patches the behavior of the system can be described in terms of the ratio of the AB and AA interactions, r. Our results show that, similarly to what happens for related off-lattice and two-dimensional lattice models, the liquid-vapor phase equilibria exhibit reentrant behavior for some values of the interaction parameters. However, for the model studied here the liquid-vapor phase equilibria occur for values of r lower than 1/3, a threshold value which was previously thought to be universal for 2AnB models. In addition, the theory predicts that below r = 1/3 (and above a new condensation threshold which is < 1/3) the reentrant liquid-vapor equilibria are so extreme that it exhibits a closed loop with a lower critical point, a very unusual behavior in single-component systems. An order-disorder transition is also observed at higher densities than the liquid-vapor equilibria, which shows that the liquid-vapor reentrancy occurs in an equilibrium region of the phase diagram. These findings may have implications in the understanding of the condensation of dipolar hard spheres given the analogy between that system and the 2AnB models considered here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4771591]
Resumo:
We consider the quark sector of theories containing three scalar SU(2)(L) doublets in the triplet representation of A(4) (or S-4) and three generations of quarks in arbitrary A(4) (or S-4) representations. We show that for all possible choices of quark field representations and for all possible alignments of the Higgs vacuum expectation values that can constitute global minima of the scalar potential, it is not possible to obtain simultaneously nonvanishing quark masses and a nonvanishing CP-violating phase in the Cabibbo-Kobayashi-Maskawa quark mixing matrix. As a result, in this minimal form, models with three scalar fields in the triplet representation of A(4) or S-4 cannot be extended to the quark sector in a way consistent with experiment. DOI: 10.1103/PhysRevD.87.055010.
Resumo:
A novel high throughput and scalable unified architecture for the computation of the transform operations in video codecs for advanced standards is presented in this paper. This structure can be used as a hardware accelerator in modern embedded systems to efficiently compute all the two-dimensional 4 x 4 and 2 x 2 transforms of the H.264/AVC standard. Moreover, its highly flexible design and hardware efficiency allows it to be easily scaled in terms of performance and hardware cost to meet the specific requirements of any given video coding application. Experimental results obtained using a Xilinx Virtex-5 FPGA demonstrated the superior performance and hardware efficiency levels provided by the proposed structure, which presents a throughput per unit of area relatively higher than other similar recently published designs targeting the H.264/AVC standard. Such results also showed that, when integrated in a multi-core embedded system, this architecture provides speedup factors of about 120x concerning pure software implementations of the transform algorithms, therefore allowing the computation, in real-time, of all the above mentioned transforms for Ultra High Definition Video (UHDV) sequences (4,320 x 7,680 @ 30 fps).
Resumo:
Solubilities of three primary amides, namely, acetanilide, propanamide, and butanamide, in supercritical carbon dioxide were measured at T = (308.2, 313.2, and 323.2) K over the pressure range (9.0 to 40.0) MPa by a flow type apparatus. The solubility behavior of the three solids shows an analogous trend with a crossover region of the respective isotherms between (12 to 14) MPa. The solubility of each amide, at the same temperature and pressure, decreases from propanamide to acetanilide. Pure compound properties required for the modeling were estimated, and the solubilities of the amides were correlated by using the Soave-Redlich-Kwong cubic equation of state with an absolute average relative deviation (AARD) from (1.3 to 6.1) %.
Resumo:
We study neutrino masses and mixing in the context of flavor models with A(4) symmetry, three scalar doublets in the triplet representation, and three lepton families. We show that there is no representation assignment that yields a dimension-5 mass operator consistent with experiment. We then consider a type-I seesaw with three heavy right-handed neutrinos, explaining in detail why it fails, and allowing us to show that agreement with the present neutrino oscillation data can be recovered with the inclusion of dimension-3 heavy neutrino mass terms that break softly the A(4) symmetry.
Resumo:
The scientific evidence supporting the management of the chronically ill in a positive psychological perspective in opposition to traditional pathological approach is scarce. This study examines issues associated with recovery of health status in heart failure, in particular hope, affection, and happiness. We use a longitudinal study of 128 symptomatic patients who after medical intervention reported improved quality of life and function at 3-month follow-up. We evaluated the contribution of happiness, hope and affection, individually and as a whole, in the quality of life and functionality of individuals with heart failure. Happiness (Subjective Happiness Scale), Hope (HOPE Scale), and affection (PANAS (positive and negative affect schedule)) were determined before medical intervention. Individually, we found that happiness is correlated with the quality of life and functionality, hope to self-efficacy dimension of the quality of life scale, positive affect to functionality and negative affect with symptoms dimension, quality of life dimension, and overall sum of the quality of life scale. Overall, we found that happiness has a unique contribution to the quality of life, except in self-efficacy dimension where hope takes this contribution and positive affect has a unique contribution to the functionality in this short-term follow-up. The results highlight the importance of positive variables to health outcomes for people with heart failure and should be considered in intervention programs for this syndrome.
Resumo:
A new high performance architecture for the computation of all the DCT operations adopted in the H.264/AVC and HEVC standards is proposed in this paper. Contrasting to other dedicated transform cores, the presented multi-standard transform architecture is supported on a completely configurable, scalable and unified structure, that is able to compute not only the forward and the inverse 8×8 and 4×4 integer DCTs and the 4×4 and 2×2 Hadamard transforms defined in the H.264/AVC standard, but also the 4×4, 8×8, 16×16 and 32×32 integer transforms adopted in HEVC. Experimental results obtained using a Xilinx Virtex-7 FPGA demonstrated the superior performance and hardware efficiency levels provided by the proposed structure, which outperforms its more prominent related designs by at least 1.8 times. When integrated in a multi-core embedded system, this architecture allows the computation, in real-time, of all the transforms mentioned above for resolutions as high as the 8k Ultra High Definition Television (UHDTV) (7680×4320 @ 30fps).
Resumo:
We present the supersymmetric standard model three-loop beta-functions for gauge and Yukawa couplings and consider the effect of three-loop corrections on the standard running coupling analyses.
Resumo:
Conferência: IEEE 24th International Conference on Application-Specific Systems, Architectures and Processors (ASAP)- Jun 05-07, 2013