3 resultados para tellurium ligands

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four ruthenium(II) complexes with the formula [Ru(eta(5)-C(5)H(5))(PP)L][CF(3)SO(3)], being (PP = two triphenylphosphine molecules), L = 1-benzylimidazole, 1; (PP = two triphenylphosphine molecules), L = 2,2'bipyridine, 2; (PP = two triphenylphosphine molecules), L = 4-Methylpyridine, 3; (PP = 1,2-bis(diphenylphosphine) ethane), L = 4-Methylpyridine, 4, were prepared, in view to evaluate their potentialities as antitumor agents. The compounds were completely characterized by NMR spectroscopy and their crystal and molecular structures were determined by X-ray diffraction. Electrochemical studies were carried out giving for all the compounds quasi-reversible processes. The images obtained by atomic force microscopy (AFM) suggest interaction with pBR322 plasmid DNA. Measurements of the viscosity of solutions of free DNA and DNA incubated with different concentrations of the compounds confirmed this interaction. The cytotoxicity of compounds 1234 was much higher than that of cisplatin against human leukemia cancer cells (HL-60 cells). IC(50) values for all the compounds are in the range of submicromolar amounts. Apoptotic death percentage was also studied resulting similar than that of cisplatin. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of novel, water-stable redox-active cobalt complexes of the C-functionalized tripodal ligands tris(pyrazolyl)methane XC(pz)(3) (X = HOCH2, CH2OCH2Py or CH2OSO2Me) are reported along with their effects on DNA. The compounds were isolated as air-stable solids and fully characterized by IR and FIR spectroscopies, ESI-MS(+/-), cyclic voltammetry, controlled potential electrolysis, elemental analysis and, in a number of cases, also by single-crystal X-ray diffraction. They showed moderate cytotoxicity in vitro towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma human cancer cell lines. This viability loss is correlated with an increase of tumour cell lines apoptosis. Reactivity studies with biomolecules, such as reducing agents, H2O2, plasmid DNA and UV-visible titrations were also performed to provide tentative insights into the mode of action of the complexes. Incubation of Co(II) complexes with pDNA induced double strand breaks, without requiring the presence of any activator. This pDNA cleavage appears to be mediated by O-centred radical species.