3 resultados para synaptic homeostasis
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Objective: This study was conducted to determine the association between magnesium (Mg), body composition and insulin resistance in 136 sedentary postmenopausal women, 50 to 77 years of age. Methods: Diabetics, hypertensives and women on hormonal replacement therapy were excluded and the remaining 74 were divided according to BMI≥25 (obese: OG) and BMI<25 kg/m2 (non-obese: NOG). Nutritional data disclosed that intakes were high for protein and saturated fat, low for carbohydrates, polyunsaturated fat and Mg and normal for the other nutrients, according to recommended dietary allowances (RDA). Mg values in red blood cells (RBC-Mg) and plasma (P-Mg), were determined, as were fasting glucose, and insulin levels, Homeostasis Model Assessment (HOMA), body mass index (BMI), body fat percent (BF %), abdominal fat (AF) and free fat mass (FFM). Results: RBC-Mg values were low in both groups when compared with normal values. There were significant differences in body composition parameters, HOMA and insulin levels, with higher basal insulin levels in OG. RBC-Mg was directly correlated with insulin, HOMA and FFM in both groups, according to Pearson correlations. HOMA in OG was also directly correlated with BMI, FFM and AF. In NOG, HOMA was only correlated with FFM. The low RBC-Mg levels observed were probably due to low Mg intake and to deregulation of factors that control Mg homeostasis during menopause. Conclusions: Both Mg deficit and obesity may independently lead to a higher risk for insulin resistance and cardiovascular disease.
Resumo:
Acyl-ghrelin has been reported to increase food intake and adiposity and it is the best studied of the orexigenic gastrointestinal hormones. On the other hand, desacyl-ghrelin – DAG (the unacylated form of the hormone) has been reported as a potential player on carbohydrate metabolism. However, the potential impact of DAG on glucose homeostasis remains uncertain. In this study we aim to assess the association between DAG and insulin sensitivity.
Resumo:
Brain dopamine transporters imaging by Single Emission Tomography (SPECT) with 123I-FP-CIT (DaTScanTM) has become an important tool in the diagnosis and evaluation of Parkinson syndromes.This diagnostic method allows the visualization of a portion of the striatum – where healthy pattern resemble two symmetric commas - allowing the evaluation of dopamine presynaptic system, in which dopamine transporters are responsible for dopamine release into the synaptic cleft, and their reabsorption into the nigrostriatal nerve terminals, in order to be stored or degraded. In daily practice for assessment of DaTScan TM, it is common to rely only on visual assessment for diagnosis. However, this process is complex and subjective as it depends on the observer’s experience and it is associated with high variability intra and inter observer. Studies have shown that semiquantification can improve the diagnosis of Parkinson syndromes. For semiquantification, analysis methods of image segmentation using regions of interest (ROI) are necessary. ROIs are drawn, in specific - striatum - and in nonspecific – background – uptake areas. Subsequently, specific binding ratios are calculated. Low adherence of semiquantification for diagnosis of Parkinson syndromes is related, not only with the associated time spent, but also with the need of an adapted database of reference values for the population concerned, as well as, the examination of each service protocol. Studies have concluded, that this process increases the reproducibility of semiquantification. The aim of this investigation was to create and validate a database of healthy controls for Dopamine transporters with DaTScanTM named DBRV. The created database has been adapted to the Nuclear Medicine Department’s protocol, and the population of Infanta Cristina’s Hospital located in Badajoz, Spain.