2 resultados para surface modification, silane monolayers, colloid, fluorescence marker

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attenuated Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only currently available vaccine against tuberculosis. It is highly effective in pre-exposure immunisation against TB in children when administered by subcutaneous route to newborns. However, it does not provide permanent protection in adults. In this work, polymeric chitosan-alginate microparticles have been evaluated as potential nasal delivery systems and mucosal adjuvants for live attenuated BCG. Chitosan (CS) has been employed as adjuvant and mucosal permeation-enhancer, and, together with alginate (ALG), as additive to enhance BCG-loaded microparticles (MPs) cellular uptake in a human monocyte cell line, by particle surface modification. The most suitable particles were used for vaccine formulation and evaluation of immune response following intranasal immunisation of BALB/c mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg alloys can be used as bioresorsable metallic implants. However, the high corrosion rate of magnesium alloys has limited their biomedical applications. Although Mg ions are essential to the human body, an excess may cause undesirable health effects. Therefore, surface treatments are required to enhance the corrosion resistance of magnesium parts, decreasing its rate to biocompatible levels and allowing its safe application as bioresorbable metallic implants. The application of biocompatible silane coatings is envisaged as a suitable strategy for retarding the corrosion process of magnesium alloys. In the current work, a new glycidoxypropyltrimethoxysilane (GPTMS) based coating was tested on AZ31 magnesium substrates subjected to different surface conditioning procedures before coating deposition. The surface conditioning included a short etching with hydrofluoric acid (HF) or a dc polarisation in alkaline electrolyte. The silane coated samples were immersed in Hank's solution and the protective performance of the coating was studied through electrochemical impedance spectroscopy (EIS). The EIS data was treated by new equivalent circuit models and the results revealed that the surface conditioning process plays a key role in the effectiveness of the silane coating. The HF treated samples led to the highest impedance values and delayed the coating degradation, compared to the mechanically polished samples or to those submitted to dc polarisation.