8 resultados para soft soil

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

: A new active-contraction visco-elastic numerical model of the pelvic floor (skeletal) muscle is presented. Our model includes all elements that represent the muscle constitutive behavior, contraction and relaxation. In contrast with the previous models, the activation function can be null. The complete equations are shown and exactly linearized. Small verification and validation tests are performed and the pelvis is modeled using the data from the intra-abdominal pressure tests

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a two-Higgs-doublet model, with a Z(3) symmetry, in which CP violation originates solely in a soft (dimension-2) coupling in the scalar potential, and reveals itself solely in the CKM (quark mixing) matrix. In particular, in the mass basis the Yukawa interactions of the neutral scalars are all real. The model has only eleven parameters to fit the six quark masses and the four independent CKM-matrix observables. We find regions of parameter space in which the flavour-changing neutral couplings are so suppressed that they allow the scalars to be no heavier than a few hundred GeV. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was carried out with the aim of modeling in 2D, in plain strain, the movement of a soft cohesive soil around a pile, in order to enable the determination of stresses resulting along the pile, per unit length. The problem in study fits into the large deformations problem and can be due to landslide, be close of depth excavations, to be near of zones where big loads are applied in the soil, etc. In this study is used an constitutive Elasto-Plastic model with the failure criterion of Mohr-Coulomb to model the soil behavior. The analysis is developed considering the soil in undrained conditions. To the modeling is used the finite element program PLAXIS, which use the Updated Lagrangian - Finite Element Method (UL-FEM). In this work, special attention is given to the soil-pile interaction, where is presented with some detail the formulation of the interface elements and some studies for a better understand of his behavior. It is developed a 2-D model that simulates the effect of depth allowing the study of his influence in the stress distribution around the pile. The results obtained give an important base about how behaves the movement of the soil around a pile, about how work the finite element program PLAXIS and how is the stress distribution around the pile. The analysis demonstrate that the soil-structure interaction modeled with the UL-FEM and interface elements is more appropriate to small deformations problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main trends in workplace aggression research is studying its antecedents. But the literature also reveals that some predictors remain understudied, like organizational change [1]. Additionally, possible mediators of this relationship were not investigated. The main objective of this research is studding the mediating effect of the leader political behavior (soft and hard version) on the relationship between organizational change and workplace aggression. Participants representing a wide variety of jobs across many organizations were surveyed. The measures used in this research are an Organizational Change Questionnaire climate of change, processes, and readiness [2], a Workplace Aggression Scale [e.g. 3, 4] and a Political Behavior Questionnaire [5]. The results of the study and its theoretical and practical implications will be presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iberian viticultural regions are convened according to the Denomination of Origin (DO) and present different climates, soils, topography and management practices. All these elements influence the vegetative growth of different varieties throughout the peninsula, and are tied to grape quality and wine type. In the current study, an integrated analysis of climate, soil, topography and vegetative growth was performed for the Iberian DO regions, using state-of-the-art datasets. For climatic assessment, a categorized index, accounting for phenological/thermal development, water availability and grape ripening conditions was computed. Soil textural classes were established to distinguish soil types. Elevation and aspect (orientation) were also taken into account, as the leading topographic elements. A spectral vegetation index was used to assess grapevine vegetative growth and an integrated analysis of all variables was performed. The results showed that the integrated climate-soil-topography influence on vine performance is evident. Most Iberian vineyards are grown in temperate dry climates with loamy soils, presenting low vegetative growth. Vineyards in temperate humid conditions tend to show higher vegetative growth. Conversely, in cooler/warmer climates, lower vigour vineyards prevail and other factors, such as soil type and precipitation acquire more important roles in driving vigour. Vines in prevailing loamy soils are grown over a wide climatic diversity, suggesting that precipitation is the primary factor influencing vigour. The present assessment of terroir characteristics allows direct comparison among wine regions and may have great value to viticulturists, particularly under a changing climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR), Rheology coupled with NMR (Rheo-NMR), rheology, optical methods, Magnetic Resonance Imaging (MRI), Wide Angle X-rays Scattering (WAXS), were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich structures with soft cores are widely used in applications where a high bending stiffness is required without compromising the global weight of the structure, as well as in situations where good thermal and damping properties are important parameters to observe. As equivalent single layer approaches are not the more adequate to describe realistically the kinematics and the stresses distributions as well as the dynamic behaviour of this type of sandwiches, where shear deformations and the extensibility of the core can be very significant, layerwise models may provide better solutions. Additionally and in connection with this multilayer approach, the selection of different shear deformation theories according to the nature of the material that constitutes the core and the outer skins can predict more accurately the sandwich behaviour. In the present work the authors consider the use of different shear deformation theories to formulate different layerwise models, implemented through kriging-based finite elements. The viscoelastic material behaviour, associated to the sandwich core, is modelled using the complex approach and the dynamic problem is solved in the frequency domain. The outer elastic layers considered in this work may also be made from different nanocomposites. The performance of the models developed is illustrated through a set of test cases. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Right now you are probably sitting on a comfy cushion. This is most likely filled with polyurethane (PU) foam. PUs are very long molecules made up of many repeating units. If the repeating units are prepolymers – intermediate-mass building blocks – with more than two reactive end groups, a three-dimensional network will form – a rubber, or elastomer, which can behave elastically depending on the degree of network cross-linking.