9 resultados para small ions
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
One Plus Sequential Air Sampler—Partisol was placed in a small village (Foros de Arrão) in central Portugal to collect PM10 (particles with an aerodynamic diameter below 10 μm), during the winter period for 3 months (December 2009–March 2010). Particles masses were gravimetrically determined and the filters were analyzed by instrumental neutron activation analysis to assess their chemical composition. The water-soluble ion compositions of the collected particles were determined by Ion-exchange Chromatography. Principal component analysis was applied to the data set of chemical elements and soluble ions to assess the main sources of the air pollutants. The use of both analytical techniques provided information about elemental solubility, such as for potassium, which was important to differentiate sources.
Resumo:
In this paper we present an amorphous silicon device that can be used in two operation modes to measure the concentration of ions in solution. While crystalline devices present a higher sensitivity, their amorphous counterpart present a much lower fabrication cost, thus enabling the production of cheap disposable sensors for use, for example, in the food industry. The devices were fabricated on glass substrates by the PECVD technique in the top gate configuration, where the metallic gate is replaced by an electrolytic solution with an immersed Ag/AgCl reference electrode. Silicon nitride is used as gate dielectric enhancing the sensitivity and passivation layer used to avoid leakage and electrochemical reactions. In this article we report on the semiconductor unit, showing that the device can be operated in a light-assisted mode, where changes in the pH produce changes on the measured ac photocurrent. In alternative the device can be operated as a conventional ion selective field effect device where changes in the pH induce changes in the transistor's threshold voltage.
Resumo:
The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.
Resumo:
Toxic amides, such as acrylamide, are potentially harmful to Human health, so there is great interest in the fabrication of compact and economical devices to measure their concentration in food products and effluents. The CHEmically Modified Field Effect Transistor (CHEMFET) based onamorphous silicon technology is a candidate for this type of application due to its low fabrication cost. In this article we have used a semi-empirical modelof the device to predict its performance in a solution of interfering ions. The actual semiconductor unit of the sensor was fabricated by the PECVD technique in the top gate configuration. The CHEMFET simulation was performed based on the experimental current voltage curves of the semiconductor unit and on an empirical model of the polymeric membrane. Results presented here are useful for selection and design of CHEMFET membranes and provide an idea of the limitations of the amorphous CHEMFET device. In addition to the economical advantage, the small size of this prototype means it is appropriate for in situ operation and integration in a sensor array.
Resumo:
Evolution by natural selection is driven by the continuous generation of adaptive mutations. We measured the genomic mutation rate that generates beneficial mutations and their effects on fitness in Escherichia coli under conditions in which the effect of competition between lineages carrying different beneficial mutations is minimized. We found a rate on the order of 10–5 per genome per generation, which is 1000 times as high as previous estimates, and a mean selective advantage of 1%. Such a high rate of adaptive evolution has implications for the evolution of antibiotic resistance and pathogenicity.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.
Resumo:
Invariant integrals are derived for nematic liquid crystals and applied to materials with small Ericksen number and topological defects. The nematic material is confined between two infinite plates located at y = -h and y = h (h is an element of R+) with a semi-infinite plate at y = 0 and x < 0. Planar and homeotropic strong anchoring boundary conditions to the director field are assumed at these two infinite and semi-infinite plates, respectively. Thus, a line disclination appears in the system which coincides with the z-axis. Analytical solutions to the director field in the neighbourhood of the singularity are obtained. However, these solutions depend on an arbitrary parameter. The nematic elastic force is thus evaluated from an invariant integral of the energy-momentum tensor around a closed surface which does not contain the singularity. This allows one to determine this parameter which is a function of the nematic cell thickness and the strength of the disclination. Analytical solutions are also deduced for the director field in the whole region using the conformal mapping method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Reaction of the tris(3-phenylpyrazolyl)methane sulfonate species (Tpms(Ph))Li with the copper(I) complex [Cu(MeCN)(4)][PF6] affords [Cu(Tpms(Ph))(MeCN)] 1. The latter, upon reaction with equimolar amounts of cyclohexyl-(CyNC) or 2,6-dimethylphenyl (XylNC) isocyanides, or excess CO, furnishes the corresponding Cu(I)complexes [Cu(Tpms(Ph))(CNR)] (R = Cy 2, Xyl 3) or [Cu(Tpms(Ph))(CO)] 4. The ligated isocyanide in 2 or 3 (or the acetonitrile ligand in 1)is displaced by 3-iminoisoindolin-1-one to afford 5, the first copper(I) complex containing an 3-iminoisoindolin-1-one ligand. The ligated acetonitrile in 1 undergoes nucleophilic attack by methylamine to give the amidine complex [Cu(Tpms(Ph)){MeC(NH)NHMe}] 6, whereas only the starting materials were recovered from the attempted corresponding reactions of 2 and 3 with methylamine. Complexes 1 or 6 form the trinuclear hydroxo-copper(II)species [(mu-Cu){Cu(mu-OH) (2)(Tpms(Ph))}(2)] 7 upon air oxidation in moist methanol. In all the complexes the scorpionate ligand facially caps the metal in the N,N,O-coordination mode.