4 resultados para self-consistent-field
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
We investigate a mechanism that generates exact solutions of scalar field cosmologies in a unified way. The procedure investigated here permits to recover almost all known solutions, and allows one to derive new solutions as well. In particular, we derive and discuss one novel solution defined in terms of the Lambert function. The solutions are organised in a classification which depends on the choice of a generating function which we have denoted by x(phi) that reflects the underlying thermodynamics of the model. We also analyse and discuss the existence of form-invariance dualities between solutions. A general way of defining the latter in an appropriate fashion for scalar fields is put forward.
Resumo:
This paper is about a design of an urban area Darrieus VAWT, having self-start ability due to an innovative profile design named EN0005, avoiding the need of extra components or external electricity feed-in. An approach is presented to study the ability of a blade profile to offer self-start ability. Methodologies applied for the blade body and for profile development are reported. Field tests and main conclusions are presented to persuade for the arrangement of this design. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We compare the magnetic field at the centre and the self-magnetic flux through a current-carrying circular loop, with those obtained for current-carrying polygons with the same perimeter. As the magnetic field diverges at the position of the wires, we compare the self-fluxes utilizing several regularization procedures. The calculation is best performed utilizing the vector potential, thus highlighting its usefulness in practical applications. Our analysis answers some of the intuition challenges students face when they encounter a related simple textbook example. These results can be applied directly to the determination of mutual inductances in a variety of situations.
Resumo:
With the help of a unique combination of density functional theory and computer simulations, we discover two possible scenarios, depending on concentration, for the hierarchical self-assembly of magnetic nanoparticles on cooling. We show that typically considered low temperature clusters, i.e. defect-free chains and rings, merge into more complex branched structures through only three types of defects: four-way X junctions, three-way Y junctions and two-way Z junctions. Our accurate calculations reveal the predominance of weakly magnetically responsive rings cross-linked by X defects at the lowest temperatures. We thus provide a strategy to fine-tune magnetic and thermodynamic responses of magnetic nanocolloids to be used in medical and microfluidics applications.