6 resultados para rose diagrams

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use Wertheim's first-order perturbation theory to investigate the phase behaviour and the structure of coexisting fluid phases for a model of patchy particles with dissimilar patches (two patches of type A and f(B) patches of type B). A patch of type alpha = {A, B} can bond to a patch of type beta = {A, B} in a volume nu(alpha beta), thereby decreasing the internal energy by epsilon(alpha beta). We analyse the range of model parameters where AB bonds, or Y-junctions, are energetically disfavoured (epsilon(AB) < epsilon(AA)/2) but entropically favoured (nu(AB) >> nu(alpha alpha)), and BB bonds, or X-junctions, are energetically favoured (epsilon(BB) > 0). We show that, for low values of epsilon(BB)/epsilon(AA), the phase diagram has three different regions: (i) close to the critical temperature a low-density liquid composed of long chains and rich in Y-junctions coexists with a vapour of chains; (ii) at intermediate temperatures there is coexistence between a vapour of short chains and a liquid of very long chains with X-and Y-junctions; (iii) at low temperatures an ideal gas coexists with a high-density liquid with all possible AA and BB bonds formed. It is also shown that in region (i) the liquid binodal is reentrant (its density decreases with decreasing temperature) for the lower values of epsilon(BB)/epsilon(AA). The existence of these three regions is a consequence of the competition between the formation of X- and Y-junctions: X-junctions are energetically favoured and thus dominate at low temperatures, whereas Y-junctions are entropically favoured and dominate at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effect of distinct bonding energies on the onset of criticality of low functionality fluid mixtures. We focus on mixtures ofparticles with two and three patches as this includes the mixture where "empty" fluids were originally reported. In addition to the number of patches, thespecies differ in the type of patches or bonding sites. For simplicity, we consider that the patches on each species are identical: one species has threepatches of type A and the other has two patches of type B. We have found a rich phase behavior with closed miscibility gaps, liquid-liquid demixing, and negative azeotropes. Liquid-liquid demixing was found to pre-empt the "empty" fluid regime, of these mixtures, when the AB bonds are weaker than the AA or BB bonds. By contrast, mixtures in this class exhibit "empty" fluid behavior when the AB bonds are stronger than at least one of the other two. Mixtureswith bonding energies epsilon(BB) = epsilon(AB) and epsilon(AA) < epsilon(BB), were found to exhibit an unusual negative azeotrope. (C) 2011 American Institute of Physics. [doi:10.1063/1.3561396]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In team sports, the spatial distribution of players on the field is determined by the interaction behavior established at both player and team levels. The distribution patterns observed during a game emerge from specific technical and tactical methods adopted by the teams, and from individual, environmental and task constraints that influence players' behaviour. By understanding how specific patterns of spatial interaction are formed, one can characterize the behavior of the respective teams and players. Thus, in the present work we suggest a novel spatial method for describing teams' spatial interaction behaviour, which results from superimposing the Voronoi diagrams of two competing teams. We considered theoretical patterns of spatial distribution in a well-defined scenario (5 vs 4+ GK played in a field of 20x20m) in order to generate reference values of the variables derived from the superimposed Voronoi diagrams (SVD). These variables were tested in a formal application to empirical data collected from 19 Futsal trials with identical playing settings. Results suggest that it is possible to identify a number of characteristics that can be used to describe players' spatial behavior at different levels, namely the defensive methods adopted by the players.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Team sports represent complex systems: players interact continuously during a game, and exhibit intricate patterns of interaction, which can be identified and investigated at both individual and collective levels. We used Voronoi diagrams to identify and investigate the spatial dynamics of players' behavior in Futsal. Using this tool, we examined 19 plays of a sub-phase of a Futsal game played in a reduced area (20 m(2)) from which we extracted the trajectories of all players. Results obtained from a comparative analysis of player's Voronoi area (dominant region) and nearest teammate distance revealed different patterns of interaction between attackers and defenders, both at the level of individual players and teams. We found that, compared to defenders, larger dominant regions were associated with attackers. Furthermore, these regions were more variable in size among players from the same team but, at the player level, the attackers' dominant regions were more regular than those associated with each of the defenders. These findings support a formal description of the dynamic spatial interaction of the players, at least during the particular sub-phase of Futsal investigated. The adopted approach may be extended to other team behaviors where the actions taken at any instant in time by each of the involved agents are associated with the space they occupy at that particular time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When performing a full calculation within the standard model (SM) or its extensions, it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge fields. Unfortunately, the literature is plagued with differing signs and notations. We present all SM Feynman rules, including ghosts, in a convention-independent notation, and we table the conventions in close to 40 books and reviews.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we analytically solve the Hindmarsh-Rose model (Proc R Soc Lond B221:87-102, 1984) by means of a technique developed for strongly nonlinear problems-the step homotopy analysis method. This analytical algorithm, based on a modification of the standard homotopy analysis method, allows us to obtain a one-parameter family of explicit series solutions for the studied neuronal model. The Hindmarsh-Rose system represents a paradigmatic example of models developed to qualitatively reproduce the electrical activity of cell membranes. By using the homotopy solutions, we investigate the dynamical effect of two chosen biologically meaningful bifurcation parameters: the injected current I and the parameter r, representing the ratio of time scales between spiking (fast dynamics) and resting (slow dynamics). The auxiliary parameter involved in the analytical method provides us with an elegant way to ensure convergent series solutions of the neuronal model. Our analytical results are found to be in excellent agreement with the numerical simulations.