6 resultados para refraction error
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling.
Resumo:
Introduction: Visual anomalies that affect school-age children represent an important public health problem. Data on the prevalence are lacking in Portugal but is needed for planning vision services. This study was conducted to determine the prevalence of strabismus, decreased visual acuity, and uncorrected refractive error in Portuguese children aged 6 to 11 years. Methods and materials: A cross-sectional study was carried out on a sample of 672 school-age children (7.69 ± 1.19 years). Children received an orthoptic assessment (visual acuity, ocular alignment, and ocular movements) and non-cycloplegic autorefraction. Results: After orthoptic assessment, 13.8% of children were considered abnormal (n = 93). Manifest strabismus was found in 4% of the children. Rates of esotropia (2.1%) were slightly higher than exotropia (1.8%). Strabismus rates were not statistically significant different per sex (p = 0.681) and grade (p = 0.228). Decreased visual acuity at distance was present in 11.3% of children. Visual acuity ≤20/66 (0.5 logMAR) was found in 1.3% of the children. We also found that 10.3% of children had an uncorrected refractive error. Conclusions: Strabismus affects a small proportion of the Portuguese school-age children. Decreased visual acuity and uncorrected refractive error affected a significant proportion of school-age children. New policies need to be developed to address this public health problem.
Resumo:
In video communication systems, the video signals are typically compressed and sent to the decoder through an error-prone transmission channel that may corrupt the compressed signal, causing the degradation of the final decoded video quality. In this context, it is possible to enhance the error resilience of typical predictive video coding schemes using as inspiration principles and tools from an alternative video coding approach, the so-called Distributed Video Coding (DVC), based on the Distributed Source Coding (DSC) theory. Further improvements in the decoded video quality after error-prone transmission may also be obtained by considering the perceptual relevance of the video content, as distortions occurring in different regions of a picture have a different impact on the user's final experience. In this context, this paper proposes a Perceptually Driven Error Protection (PDEP) video coding solution that enhances the error resilience of a state-of-the-art H.264/AVC predictive video codec using DSC principles and perceptual considerations. To increase the H.264/AVC error resilience performance, the main technical novelties brought by the proposed video coding solution are: (i) design of an improved compressed domain perceptual classification mechanism; (ii) design of an improved transcoding tool for the DSC-based protection mechanism; and (iii) integration of a perceptual classification mechanism in an H.264/AVC compliant codec with a DSC-based error protection mechanism. The performance results obtained show that the proposed PDEP video codec provides a better performing alternative to traditional error protection video coding schemes, notably Forward Error Correction (FEC)-based schemes. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper we exploit the nonlinear property of the SiC multilayer devices to design an optical processor for error detection that enables reliable delivery of spectral data of four-wave mixing over unreliable communication channels. The SiC optical processor is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Visible pulsed signals are transmitted together at different bit sequences. The combined optical signal is analyzed. Data show that the background acts as selector that picks one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as EXOR and three bit addition are demonstrated optically, showing that when one or all of the inputs are present, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed using four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all-optical processor for error detection and then provide an experimental demonstration of this idea. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The SiC optical processor for error detection and correction is realized by using double pin/pin a-SiC:H photodetector with front and back biased optical gating elements. Data shows that the background act as selector that pick one or more states by splitting portions of the input multi optical signals across the front and back photodiodes. Boolean operations such as exclusive OR (EXOR) and three bit addition are demonstrated optically with a combination of such switching devices, showing that when one or all of the inputs are present the output will be amplified, the system will behave as an XOR gate representing the SUM. When two or three inputs are on, the system acts as AND gate indicating the present of the CARRY bit. Additional parity logic operations are performed by use of the four incoming pulsed communication channels that are transmitted and checked for errors together. As a simple example of this approach, we describe an all optical processor for error detection and correction and then, provide an experimental demonstration of this fault tolerant reversible system, in emerging nanotechnology.
Resumo:
Purpose: It is important to establish a differential diagnosis between the different types of nystagmus, in order to give the appropriate clinical approach to every situation and to improve visual acuity. The nystagmus is normally blocked when the eyes are positioned in a particular way. This makes the child adopt a posture of ocular torticollis that reduces the nistagmiformes movements, improving the vision in this position. A way to promote the blocking of the nystagmic movements is by using prismatic lenses with opposite bases, to block or minimize the oscillatory movements. This results in a vision improvement and it reduces the anomalous head position. There is limited research on the visual results in children with nystagmus after using prisms with opposing bases. Our aim is to describe the impact on the visual acuity (VA ) of theprescription prism lenses in a nystagmus patient starting at 3 months of age. Methods: Case report on thirty month old caucasian male infant, with normal growth and development for their age, with an early onset of horizontal nystagmus at 3 months of age. Ophthalmic examination included slit lamp examination, fundus, refractive study, electrophysiological and magnetic resonance tests, measurement of VA over time with the Teller Acuity Cards (TAC ) in the distance agreed for the age. At age ten months, the mother noted a persistent turn to the right of the child’s head, which became increasingly more severe along the months. There’s no oscillopcia. At 24 months, an atropine refraction showed the following refractive error: 0D.: -1,50, OS: -0,50 and prismatic lens adapting OD 8 Δ nasal base and OE 8 Δ temporal base. Results: Thirty month old child, with adequate development for their age, with onset of idiopatic horizontal nystagmus, at 3 months of age. Normal ocular fundus and magnetic ressoance without alterations, sub-normal results in electrophysiological tests and VA with values below normal for age. At 6 months OD 20/300; OE 20/400; OU 20/300. At 9 months OD 20/250; OE 20/300; OU 20/150 (TAC a 38 cm). At 18 months OD 20/200; OE 20/100; OU 20/80 (TAC at 38 cm), when the head is turned to the right and the eyes in levoversão, the nystagmus decreases in a “neutral” area. At 24 month, with the prismatic glasses, OD 20/200 OE 20/100, OU20/80 (TAC at 54 cm, reference value is 20/30 – 20/100 para OU e 20/40 – 20/100 monocular), there was an increase in the visual acuity. The child did visual stimulation with multimedia devices and using glasses. After adaptation of prisms: at 30 months VA (with Cambridge cards) OD e OE = 6/18. The child improved the VA and reduced the anomalous head position. There is also improvement in mobility and fine motricity. Conclusion: Prisms with opposing bases., were used in the treatment of idiopathic nystagmus. Said prisms were adapted to reduce the skewed position of the head, and to improve VA and binocular function. Monitoring of visual acuity and visual stimulation was done using electronic devices. Following the use of prismatic, the patient improved significantly VA and the anomalous head position was reduced.