10 resultados para recombinant gamma interferon
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Purpose - To study the influence of protein structure on the immunogenicity in wildtype and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods - RhIFNα2b was degraded by metal catalyzed oxidation (M), crosslinking with glutaraldehyde (G), oxidation with hydrogen peroxide (H) and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reversed-phase HPLC, SDS-PAGE, Western blotting and mass spectrometry. The immunogenicity of the products was evaluated in wildtype mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by ELISA or surface plasmon resonance. Results - M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Native (N) rhIFNα2b was immunogenic in the wildtype mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The antirhIFNα2b antibody levels in the wildtype mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ~ N-rhIFNα2b >> B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions - RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.
Resumo:
Purpose: This study was conducted to study the influence of protein structure on the immunogenicity in wild-type and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods: RhIFNα2b was degraded by metal-catalyzed oxidation (M), cross-linking with glutaraldehyde (G), oxidation with hydrogen peroxide (H), and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reverse-phase high-pressure liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. The immunogenicity of the products was evaluated in wild-type mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by enzyme-linked immunosorbent assay or surface plasmon resonance. Results: M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Nontreated (N) rhIFNα2b was immunogenic in the wild-type mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The anti-rhIFNα2b antibody levels in the wild-type mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ∼ N-rhIFNα2b ≫ B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions: RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.
Resumo:
We report here the cloning and the characterization of the T. pyriformis CCT eta gene (TpCCT eta) and also a partial sequence of the corresponding T. thermophila gene (TtCCT eta). The TpCCt eta gene encodes a protein sharing a 60.3% identity with the mouse CCT eta. We have studied the expression of these genes in Tetrahymena exponentially growing cells, cells regenerating their cilia for different periods and during different stages of the cell sexual reproduction. These genes have similar patterns of expression to those of the previously identified TpCCt gamma gene. Indeed, the Tetrahymena CCT eta and CCT gamma genes are up-regulated at 60-120 min of cilia recovery, and in conjugation when vegetative growth was resumed and cell division took place. Our results seem to indicate that both CCT subunits play an important role in the biogenesis of the newly synthesized cilia of Tetrahymena and during its cell division.
Resumo:
The interaction of a variety of substrates with Pseudomonas aeruginosa native amidase (E.C. 3.5.1.4), overproduced in an Escherichia coli strain, was investigated using difference FTIR spectroscopy. The amides used as substrates showed an increase in hydrogen bonding upon association in multimers, which was not seen with esters. Evidence for an overall reduction or weakening of hydrogen bonding while amide and ester substrates are interacting with the enzyme is presented. The results describe a spectroscopic approach for analysis of substrate-amidase interaction and in situ monitoring of the hydrolysis and transferase reaction when amides or esters are used as substrates.
Resumo:
The conjugation of antigens with ligands of pattern recognition receptors (PRR) is emerging as a promising strategy for the modulation of specific immunity. Here, we describe a new Escherichia coli system for the cloning and expression of heterologous antigens in fusion with the OprI lipoprotein, a TLR ligand from the Pseudomonas aeruginosa outer membrane (OM). Analysis of the OprI expressed by this system reveals a triacylated lipid moiety mainly composed by palmitic acid residues. By offering a tight regulation of expression and allowing for antigen purification by metal affinity chromatography, the new system circumvents the major drawbacks of former versions. In addition, the anchoring of OprI to the OM of the host cell is further explored for the production of novel recombinant bacterial cell wall-derived formulations (OM fragments and OM vesicles) with distinct potential for PRR activation. As an example, the African swine fever virus ORF A104R was cloned and the recombinant antigen was obtained in the three formulations. Overall, our results validate a new system suitable for the production of immunogenic formulations that can be used for the development of experimental vaccines and for studies on the modulation of acquired immunity.
Resumo:
The effect of cultivation parameters such as temperature incubation, IPTG induction and ethanol shock on the production of Pseudomonasaeruginosa amidase (E.C.3.5.1.4) in a recombinant Escherichia coli strain in LB ampicillin culture medium was investigated. The highest yield of solubleamidase, relatively to other proteins, was obtained in the condition at 37 degrees C using 0.40 mM IPTG to induce growth, with ethanol. Our results demonstrate the formation of insoluble aggregates containing amidase, which was biologically active, in all tested growth conditions. Addition of ethanol at 25 degrees C in the culture medium improved amidase yield, which quantitatively aggregated in a biologically active form and exhibited in all conditions an increased specific activity relatively to the soluble form of the enzyme. Non-denaturing solubilization of the aggregated amidase was successfully achieved using L-arginine. The aggregates obtained from conditions at 37 degrees C by Furier transform infrared spectroscopy (FTIR) analysis demonstrated a lower content of intermolecular interactions, which facilitated the solubilization step applying non-denaturing conditions. The higher interactions exhibited in aggregates obtained at suboptimal conditions compromised the solubilization yield. This work provides an approach for the characterization and solubilization of novel reported biologically active aggregates of this amidase.
Resumo:
Objective - To describe and validate the simulation of the basic features of GE Millennium MG gamma camera using the GATE Monte Carlo platform. Material and methods - Crystal size and thickness, parallel-hole collimation and a realistic energy acquisition window were simulated in the GATE platform. GATE results were compared to experimental data in the following imaging conditions: a point source of 99mTc at different positions during static imaging and tomographic acquisitions using two different energy windows. The accuracy between the events expected and detected by simulation was obtained with the Mann–Whitney–Wilcoxon test. Comparisons were made regarding the measurement of sensitivity and spatial resolution, static and tomographic. Simulated and experimental spatial resolutions for tomographic data were compared with the Kruskal–Wallis test to assess simulation accuracy for this parameter. Results - There was good agreement between simulated and experimental data. The number of decays expected when compared with the number of decays registered, showed small deviation (≤0.007%). The sensitivity comparisons between static acquisitions for different distances from source to collimator (1, 5, 10, 20, 30cm) with energy windows of 126–154 keV and 130–158 keV showed differences of 4.4%, 5.5%, 4.2%, 5.5%, 4.5% and 5.4%, 6.3%, 6.3%, 5.8%, 5.3%, respectively. For the tomographic acquisitions, the mean differences were 7.5% and 9.8% for the energy window 126–154 keV and 130–158 keV. Comparison of simulated and experimental spatial resolutions for tomographic data showed no statistically significant differences with 95% confidence interval. Conclusions - Adequate simulation of the system basic features using GATE Monte Carlo simulation platform was achieved and validated.
Resumo:
Background - The eukaryotic cytosolic chaperonin CCT is a hetero-oligomeric complex formed by two rings connected back-to-back, each composed of eight distinct subunits (CCTalpha to CCTzeta). CCT complex mediates the folding, of a wide range of newly synthesised proteins including tubulin (alpha, beta and gamma) and actin, as quantitatively major substrates. Methodology/Principal findings - We disrupted the genes encoding CCTalpha and CCTdelta subunits in the ciliate Tetrahymena. Cells lacking the zygotic expression of either CCTalpha or CCTdelta showed a loss of cell body microtubules, failed to assemble new cilia and died within 2 cell cycles. We also show that loss of CCT subunit activity leads to axoneme shortening and splaying of tips of axonemal microtubules. An epitope-tagged CCTalpha rescued the gene knockout phenotype and localized primarily to the tips of cilia. A mutation in CCTalpha, G346E, at a residue also present in the related protein implicated in the Bardet Biedel Syndrome, BBS6, also caused defects in cilia and impaired CCTalpha localization in cilia. Conclusions/Significance - Our results demonstrate that the CCT subunits are essential and required for ciliary assembly and maintenance of axoneme structure, especially at the tips of cilia.
Resumo:
The consumption of natural products has become a public health problem, since these medicinal teas are prepared using natural plants without an effective hygienic and sanitary control. The aim of this study was to assess the effects of gamma radiation, on the microbial burden of two medicinal plants: Melissa officinalis and Lippia citriodora. Dried samples of the two plants were irradiated at a Co-60 experimental equipment. The applied gamma radiation doses were 1, 3, and 5 kGy at a dose rate of 1.34 kGy/h. Non-irradiated samples followed all the experiments. Bacterial and fungal counts were assessed before and after irradiation by membrane filtration method. Challenging tests with Escherichia coli were performed in order to evaluate the disinfection efficiency of gamma radiation treatment. Characterization of M. officinalis and L. citriadora microbiota indicated an average bioburden value of 102CFU/g. The inactivation studies of the bacterial mesophilic population of both dried plants pointed out to a one log reduction of microbial load after irradiation at 5 kGy. Regarding the fungal population, the initial load of 30 CFU/g was only reduced by 0.5 log by an irradiation dose of 5 kGy. The dynamics with radiation doses of plants microbial population’s phenotypes indicated the prevalence of gram-positive rods for M. officinalis before and after irradiation, and the increase of the frequency of gram-negative rods with irradiation for L. citriadora. Among fungal population of both plants, Mucor, Neoscytalidium, Aspergillus and Alternaria were the most isolated genera. The results obtained in the challenging tests with E. coli on plants pointed out to an inactivation efficiency of 99.5% and 99.9% to a dose of 2 kGy, for M.officinalis and L. citriadora, respectively. The gamma radiation treatment can be a significant tool for the microbial control in medicinal plants.
Resumo:
Infrared spectroscopy, either in the near and mid (NIR/MIR) region of the spectra, has gained great acceptance in the industry for bioprocess monitoring according to Process Analytical Technology, due to its rapid, economic, high sensitivity mode of application and versatility. Due to the relevance of cyprosin (mostly for dairy industry), and as NIR and MIR spectroscopy presents specific characteristics that ultimately may complement each other, in the present work these techniques were compared to monitor and characterize by in situ and by at-line high-throughput analysis, respectively, recombinant cyprosin production by Saccharomyces cerevisiae. Partial least-square regression models, relating NIR and MIR-spectral features with biomass, cyprosin activity, specific activity, glucose, galactose, ethanol and acetate concentration were developed, all presenting, in general, high regression coefficients and low prediction errors. In the case of biomass and glucose slight better models were achieved by in situ NIR spectroscopic analysis, while for cyprosin activity and specific activity slight better models were achieved by at-line MIR spectroscopic analysis. Therefore both techniques enabled to monitor the highly dynamic cyprosin production bioprocess, promoting by this way more efficient platforms for the bioprocess optimization and control.