5 resultados para random forest data analysis

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a new method for self-localization of mobile robots, based on a PCA positioning sensor to operate in unstructured environments, is proposed and experimentally validated. The proposed PCA extension is able to perform the eigenvectors computation from a set of signals corrupted by missing data. The sensor package considered in this work contains a 2D depth sensor pointed upwards to the ceiling, providing depth images with missing data. The positioning sensor obtained is then integrated in a Linear Parameter Varying mobile robot model to obtain a self-localization system, based on linear Kalman filters, with globally stable position error estimates. A study consisting in adding synthetic random corrupted data to the captured depth images revealed that this extended PCA technique is able to reconstruct the signals, with improved accuracy. The self-localization system obtained is assessed in unstructured environments and the methodologies are validated even in the case of varying illumination conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a methodology which enables the graphical representation, in a bi-dimensional Euclidean space, of atmospheric pollutants emissions in European countries. This approach relies on the use of Multidimensional Unfolding (MDU), an exploratory multivariate data analysis technique. This technique illustrates both the relationships between the emitted gases and the gases and their geographical origins. The main contribution of this work concerns the evaluation of MDU solutions. We use simulated data to define thresholds for the model fitting measures, allowing the MDU output quality evaluation. The quality assessment of the model adjustment is thus carried out as a step before interpretation of the gas types and geographical origins results. The MDU maps analysis generates useful insights, with an immediate substantive result and enables the formulation of hypotheses for further analysis and modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Contabilidade

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.