7 resultados para quercetin 3 methyl ether
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Supercritical fluid extraction (SEE) of the volatile oil from Thymus vulgaris L. aerial flowering parts was performed under different conditions of pressure, temperature, mean particle size and CO2 flow rate and the correspondent yield and composition were compared with those of the essential oil isolated by hydrodistillation (HD). Both the oils were analyzed by GC and GC-MS and 52 components were identified. The main volatile components obtained were p-cymene (10.0-42.6% for SFE and 28.9-34.8% for HD), gamma-terpinene (0.8-6.9% for SFE and 5.1-7.0% for HD), linalool (2.3-5.3% for SFE and 2.8-3.1% for HD), thymol (19.5-40.8% for SFE and 35.4-41.6% for HD), and carvacrol (1.4-3.1% for SFE and 2.6-3.1% for HD). The main difference was found to be the relative percentage of thymoquinone (not found in the essential oil) and carvacryl methyl ether (1.0-1.2% for HD versus t-0.4 for SFE) which can explain the higher antioxidant activity, assessed by Rancimat test, of the SFE volatiles when compared with HD. Thymoquinone is considered a strong antioxidant compound.
Resumo:
The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.
Resumo:
Thymidylate synthase, as a rate-limiting step in DNA synthesis, catalyses the conversion of dUMP into dTMP using 5,10-methylenotetrahydrofolate as the methyl donor. Two polymorphisms have been described in this gene: a repeat polymorphism in the 5' promoter enhancer region (3R versus 2R) and a 6 bp deletion in the 3' unstranslated region. Both of these may affect protein levels. The present case control study was aimed at investigating the influence of these two polymorphisms on the development of colorectal cancer (CRC), as well as their potential interaction with folate, vitamin B6 and vitamin B12 intake. A total of 196 cases and 200 controls, matched for age and sex distribution, were included in the study. No association was found between CRC and the 28 bp repeat polymorphism, but it was observed that individuals with the 6 bp/del and del/del genotypes had a significantly lower risk of developing the disease (OR=0.47; 95% CI 0.30-0.72). A combined genotype (2R/2R; 6 bp/del+del/del) was also found, which was associated with an even lower risk of developing of the disease (OR=0.42; 95% CI 0.26-0.69). No significant interaction between these polymorphisms and vitamin intake was observed. These results indicate for the first time that the 6 bp/del allele might be a protective factor in the development of CRC, independent of the intake of methyl group donors.
Resumo:
The compounds [mPTA][CoCl4] (1, mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [CoCl(H2O)(DION)(2)][BF4] (2, DION = 1,10-phenanthroline-5,6-dione), [Zn(DION)(2)]Cl-2 (3) and [ZnCl(O-PTA=O)(DION)][BF4] (4) were synthesized by reaction of CoCl2 with [mPTA]I or DION and ZnCl2 with DION or 1,3,5-triaza-7-phosphaadamantane-7-oxide (PTA=O) and DION, respectively. All complexes are water soluble and have been characterized by IR, far-IR, H-1, C-13 and P-31{H-1} NMR spectroscopy, ESI-MS, elemental analyses and single-crystal X-ray diffraction structural analysis (for 1). They were screened against the human tumour cell lines HCT116, HepG2 and MCF7. Complexes 2 and 3 exhibit the highest in vitro cytotoxicity and show lower cytotoxic activities in normal human fibroblast cell line than in HCT116 tumour cell line, which demonstrates their slight specificity for this type of tumour cell.
Resumo:
New rhenium(VII or III) complexes [ReO3(PTA)(2)][ReO4] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), [ReO3(mPTA)][ReO4] (2) (mPTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation), [ReO3(HMT)(2)] [ReO4] (3) (HMT = hexamethylenetetramine), [ReO3(eta(2)-Tpm)(PTA)][ReO4] (4) [Tpm = hydrotris(pyrazol-1-yl)methane, HC(pz)(3), pz = pyrazolyl), [ReO3(Hpz)(HMT)][ReO4] (5) (Hpz = pyrazole), [ReO(Tpms)(HMT)] (6) [Tpms = tris(pyrazol-1-yl)methanesulfonate, O3SC(pz)(3)(-)] and [ReCl2{N2C(O)Ph} (PTA)(3)] (7) have been prepared from the Re(VII) oxide Re2O2 (1-6) or, in the case of 7, by ligand exchange from the benzoyldiazenido complex [ReCl2(N2C-(O)Ph}(Hpz)(PPh3)(2)], and characterized by IR and NMR spectroscopies, elemental analysis and electrochemical properties. Theoretical calculations at the density functional theory (DFT) level of theory indicated that the coordination of PTA to both Re(III) and Re(VII) centers by the P atom is preferable compared to the coordination by the N atom. This is interpreted in terms of the Re-PTA bond energy and hard-soft acid-base theory. The oxo-rhenium complexes 1-6 act as selective catalysts for the Baeyer-Villiger oxidation of cyclic and linear ketones (e.g., 2-methylcyclohexanone, 2-methylcyclopentanone, cyclohexanone, cyclopentanone, cyclobutanone, and 3,3-dimethyl-2-butanone or pinacolone) to the corresponding lactones or esters, in the presence of aqueous H2O2. The effects of a variety of factors are studied toward the optimization of the process.
Resumo:
Background: Polymorphisms located in genes involved in the metabolism of folate and some methyl-related nutrients are implicated in colorectal cancer (CRC). Objective: We evaluated the association of 3 genetic polymorphisms [C677T MTHFR (methylene tetrahydrofolate reductase), A2756G MTR (methionine synthase), and C1420T SHMT (serine hydroxymethyltransferase)] with the intake of methyl-donor nutrients in CRC risk. Design: Patients withCRC(n 196) and healthy controls (n 200) matched for age and sex were evaluated for intake of methyl-donor nutrients and the 3 polymorphisms. Results: Except for folate intake, which was significantly lower in patients (P 0.02), no differences were observed in the dietary intake of other methyl-donor nutrients between groups. High intake of folate ( 406.7 g/d) was associated with a significantly lower risk of CRC (odds ratio: 0.67; 95% CI: 0.45, 0.99). The A2756G MTR polymorphism was not associated with the risk of developing CRC. In contrast, homozygosity for the C677TMTHFRvariant (TT) presented a 3.0-fold increased risk of CRC (95% CI: 1.3, 6.7). Similarly, homozygosity for the C1420T SHMT polymorphism also had a 2.6-fold increased risk (95% CI: 1.1, 5.9) of developing CRC. When interactions between variables were studied, low intake of all methyl-donor nutrients was associated with an increased risk ofCRC in homozygous participants for the C677T MTHFR polymorphism, but a statistically significant interaction was only observed for folate (odds ratio: 14.0; 95% CI: 1.8, 108.5). No significant associations were seen for MTR or SHMT polymorphisms. Conclusion: These results show an association between the C677T MTHFR variant and different folate intakes on risk of CRC.
Resumo:
The aim of the present work is to provide insight into the mechanism of laccase reactions using syringyl-type mediators. We studied the pH dependence and the kinetics of oxidation of syringyl-type phenolics using the low CotA and the high redox potential TvL laccases. Additionally, the efficiency of these compounds as redox mediators for the oxidation of non-phenolic lignin units was tested at different pH values and increasing mediator/non-phenolic ratios. Finally, the intermediates and products of reactions were identified by LC-MS and H-1 NMR. These approaches allow concluding on the (1) mechanism involved in the oxidation of phenolics by bacterial laccases, (2) importance of the chemical nature and properties of phenolic mediators, (3) apparent independence of the enzyme's properties on the yields of non-phenolics conversion, (4) competitive routes involved in the catalytic cycle of the laccase-mediator system with several new C-O coupling type structures being proposed.