3 resultados para quantitative polymerase chain reaction

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Very few studies regarding fungal and particulate matter (PM) exposure in feed industry have been reported, although such contaminants are likely to be a significant contributing factor to several symptoms reported among workers. The purpose of this study has been to characterize fungal and dust exposure in one Portuguese feed industry. Material and Methods: Air and surface samples were collected and subject to further macro- and microscopic observations. In addition we collected other air samples in order to perform real-time quantitative polymerase chain reaction (PCR) amplification of genes from Aspergillus fumigatus and Aspergillus flavus complexes as well as Stachybotrys chartarum. Additionally, two exposure metrics were considered – particle mass concentration (PMC), measured in 5 different sizes (PM0.5, PM1, PM2.5, PM5, PM10), and particle number concentration (PNC) based on results given in 6 different sizes in terms of diameter (0.3 μm, 0.5 μm, 1 μm, 2.5 μm, 5 μm and 10 μm). Results: Species from the Aspergillus fumigatus complex were the most abundant in air (46.6%) and in surfaces, Penicillium genus was the most frequently found (32%). The only DNA was detected from A. fumigatus complex. The most prevalent in dust samples were smaller particles which may reach deep into the respiratory system and trigger not only local effects but also the systemic ones. Conclusions: Future research work must be developed aiming at assessing the real health effects of these co-exposures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of filamentous fungi was detected in wastewater and air collected at wastewater treatment plants (WWTP) from several European countries. The aim of the present study was to assess fungal contamination in two WWTP operating in Lisbon. In addition, particulate matter (PM) contamination data was analyzed. To apply conventional methods, air samples from the two plants were collected through impaction using an air sampler with a velocity air rate of 140 L/min. Surfaces samples were collected by swabbing the surfaces of the same indoor sites. All collected samples were incubated at 27°C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. For molecular methods, air samples of 250 L were also collected using the impinger method at 300 L/min airflow rate. Samples were collected into 10 ml sterile phosphate-buffered saline with 0.05% Triton X-100, and the collection liquid was subsequently used for DNA extraction. Molecular identification of Aspergillus fumigatus and Stachybotrys chartarum was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR Detection System (Corbett). Assessment of PM was also conducted with portable direct-reading equipment (Lighthouse, model 3016 IAQ). Particles concentration measurement was performed at five different sizes: PM0.5, PM1, PM2.5, PM5, and PM10. Sixteen different fungal species were detected in indoor air in a total of 5400 isolates in both plants. Penicillium sp. was the most frequently isolated fungal genus (58.9%), followed by Aspergillus sp. (21.2%) and Acremonium sp. (8.2%), in the total underground area. In a partially underground plant, Penicillium sp. (39.5%) was also the most frequently isolated, also followed by Aspergillus sp. (38.7%) and Acremonium sp. (9.7%). Using RT-PCR, only A. fumigatus was detected in air samples collected, and only from partial underground plant. Stachybotrys chartarum was not detected in any of the samples analyzed. The distribution of particle sizes showed the same tendency in both plants; however, the partially underground plant presented higher levels of contamination, except for PM2.5. Fungal contamination assessment is crucial to evaluating the potential health risks to exposed workers in these settings. In order to achieve an evaluation of potential health risks to exposed workers, it is essential to combine conventional and molecular methods for fungal detection. Protective measures to minimize worker exposure to fungi need to be adopted since wastewater is the predominant internal fungal source in this setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bisphenol A (BPA) is capable of mimicking endogenous hormones with potential consequences for human health and BPA exposure has been associated with several human diseases including neuropsychiatric disorders. Here, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results show that BPA at low concentrations (10 ng/mL and 1 μg/mL) induces differential transcript levels of four biomarker genes for Major Depressive Disorder (MDD) in HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC). These results substantiate increasing concerns of BPA exposure in levels currently detected in humans.