23 resultados para processing capacity
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The main purpose of this research is to identify the hidden knowledge and learning mechanisms in the organization in order to disclosure the tacit knowledge and transform it into explicit knowledge. Most firms usually tend to duplicate their efforts acquiring extra knowledge and new learning skills while forgetting to exploit the existing ones thus wasting one life time resources that could be applied to increase added value within the firm overall competitive advantage. This unique value in the shape of creation, acquisition, transformation and application of learning and knowledge is not disseminated throughout the individual, group and, ultimately, the company itself. This work is based on three variables that explain the behaviour of learning as the process of construction and acquisition of knowledge, namely internal social capital, technology and external social capital, which include the main attributes of learning and knowledge that help us to capture the essence of this symbiosis. Absorptive Capacity provides the right tool to explore this uncertainty within the firm it is possible to achieve the perfect match between learning skills and knowledge needed to support the overall strategy of the firm. This study has taken in to account a sample of the Portuguese textile industry and it is based on a multisectorial analysis that makes it possible a crossfunctional analysis to check on the validity of results in order to better understand and capture the dynamics of organizational behavior.
Resumo:
The main purpose of this research is to identify the hidden knowledge and learning mechanisms in the organization in order to disclosure the tacit knowledge and transform it into explicit knowledge. Most firms usually tend to duplicate their efforts acquiring extra knowledge and new learning skills while forgetting to exploit the existing ones thus wasting one life time resources that could be applied to increase added value within the firm overall competitive advantage. This unique value in the shape of creation, acquisition, transformation and application of learning and knowledge is not disseminated throughout the individual, group and, ultimately, the company itself. This work is based on three variables that explain the behaviour of learning as the process of construction and acquisition of knowledge, namely internal social capital, technology and external social capital, which include the main attributes of learning and knowledge that help us to capture the essence of this symbiosis. Absorptive Capacity provides the right tool to explore this uncertainty within the firm it is possible to achieve the perfect match between learning skills and knowledge needed to support the overall strategy of the firm. This study has taken in to account a sample of the Portuguese textile industry and it is based on a multisectorial analysis that makes it possible a crossfunctional analysis to check on the validity of results in order to better understand and capture the dynamics of organizational behavior.
Resumo:
Develop a new model of Absorptive Capacity taking into account two variables namely Learning and knowledge to explain how companies transform information into knowledge
Resumo:
Abstract: Background: Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disease leading to sensory and motor polyneuropathies, and functional limitations. Liver transplantation is the only treatment for FAP, requiring medication that negatively affects bone and muscle metabolism. The aim of this study was to compare body composition, levels of specific strength, level of physical disability risk, and functional capacity of transplanted FAP patients (FAPTx) with a group of healthy individuals (CON). Methods: A group of patients with 48 FAPTx (28 men, 20 women) was compared with 24 CON individuals (14 men, 10 women). Body composition was assessed by dual-energy X-ray absorptiometry, and total skeletal muscle mass (TBSMM) and skeletal muscle index (SMI) were calculated. Handgrip strength was measured for both hands as was isometric strength of quadriceps. Muscle quality (MQ) was ascertained by the ratio of strength to muscle mass. Functional capacity was assessed by the six-minute walk test. Results: Patients with FAPTx had significantly lower functional capacity, weight, body mass index, total fat mass, TBSMM, SMI, lean mass, muscle strength, MQ, and bone mineral density. Conclusion: Patients with FAPTx appear to be at particularly high risk of functional disability, suggesting an important role for an early and appropriately designed rehabilitation program.
Resumo:
Liver transplantation is the unique treatment for several end-stage diseases. Familial Amiloidotic Polineuropathy (FAP) is a neurodegenerative disease related with systemic deposition of amyloidal fiber mainly on peripheral nervous system, clinically translated by an autonomous sensitive-motor neuropathy with severe functional limitations in some cases. The unique treatment for FAP disease is a liver transplant with a very aggressive medication to muscle metabolism and force production. To our knowledge there are no quantitative characterizations of body composition, strength or functional capacity in this population.
Resumo:
In MIMO systems the antenna array configuration in the BS and MS has a large influence on the available channel capacity. In this paper, we first introduce a new Frequency Selective (FS) MIMO framework for macro-cells in a realistic urban environment. The MIMO channel is built over a previously developed directional channel model, which considers the terrain and clutter information in the cluster, line-of-sight and link loss calculations. Next, MIMO configuration characteristics are investigated in order to maximize capacity, mainly the number of antennas, inter-antenna spacing and SNR impact. Channel and capacity simulation results are presented for the city of Lisbon, Portugal, using different antenna configurations. Two power allocations schemes are considered, uniform distribution and FS spatial water-filling. The results suggest optimized MIMO configurations, considering the antenna array size limitations, specially at the MS side.
Resumo:
A two terminal optically addressed image processing device based on two stacked sensing/switching p-i-n a-SiC:H diodes is presented. The charge packets are injected optically into the p-i-n sensing photodiode and confined at the illuminated regions changing locally the electrical field profile across the p-i-n switching diode. A red scanner is used for charge readout. The various design parameters and addressing architecture trade-offs are discussed. The influence on the transfer functions of an a-SiC:H sensing absorber optimized for red transmittance and blue collection or of a floating anode in between is analysed. Results show that the thin a-SiC:H sensing absorber confines the readout to the switching diode and filters the light allowing full colour detection at two appropriated voltages. When the floating anode is used the spectral response broadens, allowing B&W image recognition with improved light-to-dark sensitivity. A physical model supports the image and colour recognition process.
Resumo:
Nanofiltration process for the treatment/valorisation of cork processing wastewaters was studied. A DS-5 DK 20/40 (GE Water Technologies) nanofiltration membrane/module was used, having 2.09 m(2) of surface area. Hydraulic permeability was determined with pure water and the result was 5.2 L.h(-1).m(-2).bar(-1). The membrane presents a rejection of 51% and 99% for NaCl and MgSO4 salts, respectively. Two different types of regimes were used in the wastewaters filtration process, total recycling mode and concentration mode. The first filtration regime showed that the most favourable working transmembrane pressure was 7 bar working at 25 degrees C. For the concentration mode experiments it was observed a 30% decline of the permeate fluxes when a volumetric concentration factor of 5 was reached. The permeate COD, BOD5, colour and TOC rejection values remained well above the 90% value, which allows, therefore, the concentration of organic matter (namely the tannin fraction) in the concentrate stream that can be further used by other industries. The permeate characterization showed that it cannot be directly discharged to the environment as it does not fulfil the values of the Portuguese discharge legislation. However, the permeate stream can be recycled to the process (boiling tanks) as it presents no colour and low TOC (< 60 ppm) or if wastewater discharge is envisaged we have observed that the permeate biodegradability is higher than 0.5, which renders conventional wastewater treatments feasible.
Resumo:
Liver transplantation is the unique treatment for several end stage diseases. Familial Amiloidotic Polineuropathy (FAP) is a neurodegenerative disease related with systemic deposition of amyloidal fibre mainly on peripheral nervous system, clinically translated by an autonomous sensitive-motor neuropathy with severe functional limitations in some cases. The unique treatment for FAP disease is a liver transplant with a very aggressive medication to muscle metabolism and force production. To our knowledge there are no quantitative characterizations of body composition, strength or functional capacity in this population. The purpose of this study was to compare levels of specific strength (isometric strength adjusted by lean mass or muscle quality) and functional capacity (meters in 6 minutes walk test) between FAP patients after a liver transplant (4.1±2 months after transplant surgery) (FAPT) and a healthy group (HG).
Resumo:
The advances made in channel-capacity codes, such as turbo codes and low-density parity-check (LDPC) codes, have played a major role in the emerging distributed source coding paradigm. LDPC codes can be easily adapted to new source coding strategies due to their natural representation as bipartite graphs and the use of quasi-optimal decoding algorithms, such as belief propagation. This paper tackles a relevant scenario in distributedvideo coding: lossy source coding when multiple side information (SI) hypotheses are available at the decoder, each one correlated with the source according to different correlation noise channels. Thus, it is proposed to exploit multiple SI hypotheses through an efficient joint decoding technique withmultiple LDPC syndrome decoders that exchange information to obtain coding efficiency improvements. At the decoder side, the multiple SI hypotheses are created with motion compensated frame interpolation and fused together in a novel iterative LDPC based Slepian-Wolf decoding algorithm. With the creation of multiple SI hypotheses and the proposed decoding algorithm, bitrate savings up to 8.0% are obtained for similar decoded quality.
Resumo:
Cork processing wastewater is an aqueous complex mixture of organic compounds that have been extracted from cork planks during the boiling process. These compounds, such as polysaccharides and polyphenols, have different biodegradability rates, which depend not only on the natureof the compound but also on the size of the compound. The aim of this study is to determine the biochemical oxygen demands (BOD) and biodegradationrate constants (k) for different cork wastewater fractions with different organic matter characteristics. These wastewater fractions were obtained using membrane separation processes, namely nanofiltration (NF) and ultrafiltration (UF). The nanofiltration and ultrafiltration membranes molecular weight cut-offs (MWCO) ranged from 0.125 to 91 kDa. The results obtained showed that the biodegradation rate constant for the cork processing wastewater was around 0.3 d(-1) and the k values for the permeates varied between 0.27-0.72 d(-1), being the lower values observed for permeates generated by the membranes with higher MWCO and the higher values observed for the permeates generated by the membranes with lower MWCO. These higher k values indicate that the biodegradable organic matter that is permeated by the membranes with tighter MWCO is more readily biodegradated.
Resumo:
Structures experience various types of loads along their lifetime, which can be either static or dynamic and may be associated to phenomena of corrosion and chemical attack, among others. As a consequence, different types of structural damage can be produced; the deteriorated structure may have its capacity affected, leading to excessive vibration problems or even possible failure. It is very important to develop methods that are able to simultaneously detect the existence of damage and to quantify its extent. In this paper the authors propose a method to detect and quantify structural damage, using response transmissibilities measured along the structure. Some numerical simulations are presented and a comparison is made with results using frequency response functions. Experimental tests are also undertaken to validate the proposed technique. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The characteristics of tunable wavelength filters based on a-SiC:H multilayered stacked pin cells are studied both theoretically and experimentally. The optical transducers were produced by PECVD and tested for a proper fine tuning of the cyan and yellow fluorescent proteins emission. The active device consists of a p-i'(a-SiC:H)-n/p-i(a-Si:H)-n heterostructures sandwiched between two transparent contacts. Experimental data on spectral response analysis, current-voltage characteristics and color and transmission rate discrimination are reported. Cyan and yellow fluorescent input channels were transmitted together, each one with a specific transmission rate and different intensities. The multiplexed optical signal was analyzed by reading out, under positive and negative applied voltages, the generated photocurrents. Results show that the optimized optical transducer has the capability of combining the transient fluorescent signals onto a single output signal without losing any specificity (color and intensity). It acts as a voltage controlled optical filter: when the applied voltages are chosen appropriately the transducer can select separately the cyan and yellow channel emissions (wavelength and frequency) and also to quantify their relative intensities. A theoretical analysis supported by a numerical simulation is presented.
Resumo:
Amorphous SiC tandem heterostructures are used to filter a specific band, in the visible range. Experimental and simulated results are compared to validate the use of SiC multilayered structures in applications where gain compensation is needed or to attenuate unwanted wavelengths. Spectral response data acquired under different frequencies, optical wavelength control and side irradiations are analyzed. Transfer function characteristics are discussed. Color pulsed communication channels are transmitted together and the output signal analyzed under different background conditions. Results show that under controlled wavelength backgrounds, the device sensitivity is enhanced in a precise wavelength range and quenched in the others, tuning or suppressing a specific band. Depending on the background wavelength and irradiation side, the device acts either as a long-, a short-, or a band-rejection pass filter. An optoelectronic model supports the experimental results and gives insight on the physics of the device.
Resumo:
Red, green and blue optical signals were directed to an a-SiC:H multilayered device, each one with a specific transmission rate. The combined optical signal was analyzed by reading out, under different applied voltages, the generated photocurrent. Results show that when a chromatic time dependent wavelength combination with different transmission rates irradiates the multilayered structure, the device operates as a tunable wavelength filter and can be used in wavelength division multiplexing systems for short range communications. An application to fluorescent proteins detection is presented. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim