2 resultados para preprocessing
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Hyperspectral instruments have been incorporated in satellite missions, providing large amounts of data of high spectral resolution of the Earth surface. This data can be used in remote sensing applications that often require a real-time or near-real-time response. To avoid delays between hyperspectral image acquisition and its interpretation, the last usually done on a ground station, onboard systems have emerged to process data, reducing the volume of information to transfer from the satellite to the ground station. For this purpose, compact reconfigurable hardware modules, such as field-programmable gate arrays (FPGAs), are widely used. This paper proposes an FPGA-based architecture for hyperspectral unmixing. This method based on the vertex component analysis (VCA) and it works without a dimensionality reduction preprocessing step. The architecture has been designed for a low-cost Xilinx Zynq board with a Zynq-7020 system-on-chip FPGA-based on the Artix-7 FPGA programmable logic and tested using real hyperspectral data. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low-cost embedded systems, opening perspectives for onboard hyperspectral image processing.
Resumo:
We evaluate the integration of 3D preoperative computed tomography angiography of the coronary arteries with intraoperative 2D X-ray angiographies by a recently proposed novel registration-by-regression method. The method relates image features of 2D projection images to the transformation parameters of the 3D image. We compared different sets of features and studied the influence of preprocessing the training set. For the registration evaluation, a gold standard was developed from eight X-ray angiography sequences from six different patients. The alignment quality was measured using the 3D mean target registration error (mTRE). The registration-by-regression method achieved moderate accuracy (median mTRE of 15 mm) on real images. It does therefore not provide yet a complete solution to the 3D–2D registration problem but it could be used as an initialisation method to eliminate the need for manual initialisation.