15 resultados para premature convergence problem

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new generalized solution for DC bus capacitors voltage balancing in back-to-back m level diode-clamped multilevel converters connecting AC networks. The solution is based on the DC bus average power flow and exploits the switching configuration redundancies. The proposed balancing solution is particularized for the back-to-back multilevel structure with m=5 levels. This back-to-back converter is studied working with bidirectional power flow, connecting an induction machine to the power grid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formaldehyde was the first air pollutant, which already in the 1970s emerged as a specifically non-industrial indoor air quality problem. Yet formaldehyde remained an indoor air quality issue and the formaldehyde level in residential indoor air is among the highest of any indoor air contaminant. Formaldehyde concentrations in 4 different indoor settings (schools, office buildings, new dwellings and occupied dwellings) in Portugal were measured using Photo Ionization Detection (PID) equipment (11,7 eV lamps). All the settings presented results higher than the reference value proposed by Portuguese legislation. Furthermore, occupied dwellings showed 3 units with results above the reference. We could conclude that formaldehyde presence is a reality in monitored indoor settings. Concentration levels are higher than the Portuguese reference value for indoor settings and these can indicate health problems for occupants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforcement Learning is an area of Machine Learning that deals with how an agent should take actions in an environment such as to maximize the notion of accumulated reward. This type of learning is inspired by the way humans learn and has led to the creation of various algorithms for reinforcement learning. These algorithms focus on the way in which an agent’s behaviour can be improved, assuming independence as to their surroundings. The current work studies the application of reinforcement learning methods to solve the inverted pendulum problem. The importance of the variability of the environment (factors that are external to the agent) on the execution of reinforcement learning agents is studied by using a model that seeks to obtain equilibrium (stability) through dynamism – a Cart-Pole system or inverted pendulum. We sought to improve the behaviour of the autonomous agents by changing the information passed to them, while maintaining the agent’s internal parameters constant (learning rate, discount factors, decay rate, etc.), instead of the classical approach of tuning the agent’s internal parameters. The influence of changes on the state set and the action set on an agent’s capability to solve the Cart-pole problem was studied. We have studied typical behaviour of reinforcement learning agents applied to the classic BOXES model and a new form of characterizing the environment was proposed using the notion of convergence towards a reference value. We demonstrate the gain in performance of this new method applied to a Q-Learning agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Financial literature and financial industry use often zero coupon yield curves as input for testing hypotheses, pricing assets or managing risk. They assume this provided data as accurate. We analyse implications of the methodology and of the sample selection criteria used to estimate the zero coupon bond yield term structure on the resulting volatility of spot rates with different maturities. We obtain the volatility term structure using historical volatilities and Egarch volatilities. As input for these volatilities we consider our own spot rates estimation from GovPX bond data and three popular interest rates data sets: from the Federal Reserve Board, from the US Department of the Treasury (H15), and from Bloomberg. We find strong evidence that the resulting zero coupon bond yield volatility estimates as well as the correlation coefficients among spot and forward rates depend significantly on the data set. We observe relevant differences in economic terms when volatilities are used to price derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure to certain fungi can cause human illness. Fungi cause adverse human health effects through three specific mechanisms: generation of a harmful immune response (e.g., allergy or hypersensitivity pneumonitis); direct infection by the fungal organism; by toxic-irritant effects from mold byproducts, such as mycotoxins. In Portugal there is an increasingly industry of large facilities that produce whole chickens for domestic consumption and only few investigations have reported on fungal contamination of the poultry litter. The material used for poultry litter is varied but normally can be constitute by: pine shavings; sawdust of eucalyptus; other types of wood; peanut; coffee; sugar cane; straw; hay; grass; paper processed. Litter is one of the most contributive factors to fungal contamination in poultries. Spreading litter is one of the tasks that normally involve higher exposure of the poultry workers to dust, fungi and their metabolites, such as VOC’s and mycotoxins. After being used and removed from poultries, litter is ploughed into agricultural soils, being this practice potentially dangerous for the soil environment, as well for both humans and animals. The goal of this study was to characterize litter’s fungal contamination and also to report the incidence of keratinophilic and toxigenic fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study the impact of premature birth and low income on mother–infant interaction, four Portuguese samples were gathered: full-term, middle-class (n=99); premature, middle-class (n=63); full-term, low income (n=22); and premature, low income (n=21). Infants were filmed in a free play situation with their mothers, and the results were scored using the CARE Index. By means of multinomial regression analysis, social economic status (SES) was found to be the best predictor of maternal sensitivity and infant cooperative behavior within a set of medical and social factors. Contrary to the expectations of the cumulative risk perspective, two factors of risk (premature birth together with low SES) were as negative for mother–infant interaction as low SES solely. In this study, as previous studies have shown, maternal sensitivity and infant cooperative behavior were highly correlated, as was maternal control with infant compliance. Our results further indicate that, when maternal lack of responsiveness is high, the infant displays passive behavior, whereas when the maternal lack of responsiveness is medium, the infant displays difficult behavior. Indeed, our findings suggest that, in these cases, the link between types of maternal and infant interactive behavior is more dependent on the degree of maternal lack of responsiveness than it is on birth status or SES. The results will be discussed under a developmental and evolutionary reasoning

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss existence and multiplicity of positive solutions of the Dirichlet problem for the quasilinear ordinary differential equation-(u' / root 1 - u'(2))' = f(t, u). Depending on the behaviour of f = f(t, s) near s = 0, we prove the existence of either one, or two, or three, or infinitely many positive solutions. In general, the positivity of f is not required. All results are obtained by reduction to an equivalent non-singular problem to which variational or topological methods apply in a classical fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although numerous studies have been conducted on microbial contaminants associated with various stages related to poultry and meat products processing, only a few reported on fungal contamination of poultry litter. The goals of this study were to (1) characterize litter fungal contamination and (2) report the incidence of keratinophilic and toxigenic fungi presence. Seven fresh and 14 aged litter samples were collected from 7 poultry farms. In addition, 27 air samples of 25 litters were also collected through impaction method, and after laboratory processing and incubation of collected samples, quantitative colony-forming units (CFU/m3) and qualitative results were obtained. Twelve different fungal species were detected in fresh litter and Penicillium was the most frequent genus found (59.9%), followed by Alternaria (17.8%), Cladosporium (7.1%), and Aspergillus (5.7%). With respect to aged litter, 19 different fungal species were detected, with Penicillium sp. the most frequently isolated (42.3%), followed by Scopulariopsis sp. (38.3%), Trichosporon sp. (8.8%), and Aspergillus sp. (5.5%). A significant positive correlation was found between litter fungal contamination (CFU/g) and air fungal contamination (CFU/m3). Litter fungal quantification and species identification have important implications in the evaluation of potential adverse health risks to exposed workers and animals. Spreading of poultry litter in agricultural fields is a potential public health concern, since keratinophilic (Scopulariopsis and Fusarium genus) as well as toxigenic fungi (Aspergillus, Fusarium, and Penicillium genus) were isolated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON) - NOV 10-14, 2013

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chrysonilia sitophila is a common mould in cork industry and has been identified as a cause of IgE sensitization and occupational asthma. This fungal species have a fast growth rate that may inhibit others species’ growth causing underestimated data from characterization of occupational fungal exposure. Aiming to ascertain occupational exposure to fungi in cork industry, were analyzed papers from 2000 about the best air sampling method, to obtain quantification and identification of all airborne culturable fungi, besides the ones that have fast-growing rates. Impaction method don’t allows the collection of a representative air volume, because even with some media that restricts the growth of the colonies, in environments with higher fungal load, such as cork industry, the counting of the colonies is very difficult. Otherwise, impinger method permits the collection of a representative air volume, since we can make dilution of the collected volume. Besides culture methods that allows fungal identification trough macro- and micro-morphology, growth features, thermotolerance and ecological data, we can apply molecular biology with the impinger method, to detect the presence of non-viable particles and potential mycotoxin producers’ strains, and also to detect mycotoxins presence with ELISA or HPLC. Selection of the best air sampling method in each setting is crucial to achieve characterization of occupational exposure to fungi. Information about the prevalent fungal species in each setting and also the eventual fungal load it’s needed for a criterious selection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hoje em dia muitos dos equipamentos elétricos e eletrónicos que compramos ficam obsoletos num curto espaço de tempo por causa dos rápidos avanços tecnológicos neste campo. Equipamentos como computadores, telemóveis e equipamentos elétricos e eletrónicos de pequeno e grande porte são transformados em lixo eletrónico e muitos deles são despejados no lixo comum. Para alterar este cenário, a União Europeia publicou diretivas neste domínio com o intuito de controlar o crescimento do lixo eletrónico e reduzir o seu impacto. Neste contexto, a Universidade de Yaşar (Turquia) submeteu à União Europeia um projeto (EWASTEU) com o objetivo de fornecer uma visão do que está acontecer com o equipamento transformado em lixo eletrónico e de apresentar algumas propostas para minimizar este problema. Uma das principais questões a ser respondida será a adequação das diretivas europeias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Locating and identifying points as global minimizers is, in general, a hard and time-consuming task. Difficulties increase in the impossibility of using the derivatives of the functions defining the problem. In this work, we propose a new class of methods suited for global derivative-free constrained optimization. Using direct search of directional type, the algorithm alternates between a search step, where potentially good regions are located, and a poll step where the previously located promising regions are explored. This exploitation is made through the launching of several instances of directional direct searches, one in each of the regions of interest. Differently from a simple multistart strategy, direct searches will merge when sufficiently close. The goal is to end with as many direct searches as the number of local minimizers, which would easily allow locating the global extreme value. We describe the algorithmic structure considered, present the corresponding convergence analysis and report numerical results, showing that the proposed method is competitive with currently commonly used global derivative-free optimization solvers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.