5 resultados para pi-pi interactions

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reactions of FeCl2 center dot 2H(2)O and 2,2,2-tris(1-pyrazolyl) ethanol HOCH2C(pz)(3) (1) (pz = pyrazolyl) afford [Fe{HOCH2C(pz)(3)}(2)][FeCl4]Cl (2), [Fe{HOCH2C(pz)(3)}(2)](2)[Fe2OCl6](Cl)(2)center dot 4H(2)O (3 center dot 4H(2)O), [Fe{HOCH2C(pz)(3)}(2)] [FeCl{HOCH2C(pz)(3)}(H2O)(2)](2)(Cl)(4) (4) or [Fe{HOCH2C(pz)(3)}(2)]Cl-2 (5), depending on the experimental conditions. Compounds 1-5 were isolated as air-stable crystalline solids and fully characterized, including (1-4) by single-crystal X-ray diffraction analyses. The latter technique revealed strong intermolecular H-bonds involving the OH group of the scorpionate 2 and 3 giving rise to 1D chains which, in 3, are further expanded to a 2D network with intercalated infinite and almost plane chains of H-interacting water molecules. In 4, intermolecular pi center dot center dot center dot pi interactions involving the pyrazolyl rings are relevant. Complexes 2-5 display a high solubility in water (S-25 degrees C ca. 10-12 mg mL(-1)), a favourable feature towards their application as catalysts (or catalyst precursors) for the peroxidative oxidation of cyclo-hexane to cyclohexanol and cyclohexanone, with aqueous H2O2/MeCN, at room temperature (TON values up to ca. 385). (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A family of 9H-thioxanthen-9-one derivatives and two precursors, 2-[(4-bromophenyl) sulfanyl]-5-nitrobenzoic acid and 2-[(4-aminophenyl) sulfanyl]-5-nitrobenzoic acid, were synthesized and studied in order to assess the role of the different substituent groups in determining the supramolecular motifs. From our results we can conclude that Etter's rules are obeyed: whenever present the -COOH head to head strong hydrogen bonding dimer, R-2(2)(8) synthon, prevails as the dominant interaction. As for -NH2, the best donor when present also follows the expected hierarchy, an NH center dot center dot center dot O(COOH) was formed in the acid precursor (2) and an NH center dot center dot center dot O(C=O) in the thioxanthone (4). The main role played by weaker hydrogen bonds such as CH center dot center dot center dot O, and other intermolecular interactions, pi-pi and Br center dot center dot center dot O, as well as the geometric restraints of packing patterns shows the energetic interplay governing crystal packing. A common feature is the relation between the p-p stacking and the unit cell dimensions. A new synthon notation, R`, introduced in this paper, refers to the possibility of accounting for intra- and intermolecular interactions into recognizable and recurring aggregate patterns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Solvatochromic UV-Vis shifts of four indicators (4-nitroaniline, 4-nitroanisole, 4-nitrophenol and N,N-dimethy-1-4-nitro aniline) have been measured at 298.15 K in the ternary mixture methano1/1-propanol/acetonitrile (MeOH/1-PrOH/MeCN) in a total of 22 mole fractions, along with 18 additional mole fractions for each of the corresponding binary mixtures, MeOH/1-PrOH, 1-PrOH/MeCN and MeOH/MeCN. These values, combined with our previous experimental results for 2,6-dipheny1-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (Reichardt's betaine dye) in the same mixtures, permitted the computation of the Kamlet-Taft solvent parameters, alpha, beta, and pi*. The rationalization of the spectroscopic behavior of each probe within each mixture's whole mole fraction range was achieved through the use of the Bosch and Roses preferential solvation model. The applied model allowed the identification of synergistic behaviors in MeCN/alcohol mixtures and thus to infer the existence of solvent complexes in solution. Also, the addition of small amounts of MeCN to the binary mixtures was seen to cause a significant variation in pi*, whereas the addition of alcohol to MeCN mixtures always lead to a sudden change in a and The behavior of these parameters in the ternary mixture was shown to be mainly determined by the contributions of the underlying binary mixtures. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel alternating copolymers comprising biscalix[4]arene-p-phenylene ethynylene and m-phenylene ethynylene units (CALIX-m-PPE) were synthesized using the Sonogashira-Hagihara cross-coupling polymerization. Good isolated yields (60-80%) were achieved for the polymers that show M-n ranging from 1.4 x 10(4) to 5.1 x 10(4) gmol(-1) (gel permeation chromatography analysis), depending on specific polymerization conditions. The structural analysis of CALIX-m-PPE was performed by H-1, C-13, C-13-H-1 heteronuclear single quantum correlation (HSQC), C-13-H-1 heteronuclear multiple bond correlation (HMBC), correlation spectroscopy (COSY), and nuclear overhauser effect spectroscopy (NOESY) in addition to Fourier transform-Infrared spectroscopy and microanalysis allowing its full characterization. Depending on the reaction setup, variable amounts (16-45%) of diyne units were found in polymers although their photophysical properties are essentially the same. It is demonstrated that CALIX-m-PPE does not form ground-or excited-state interchain interactions owing to the highly crowded environment of the main-chain imparted by both calix[4]arene side units which behave as insulators inhibiting main-chain pi-pi staking. It was also found that the luminescent properties of CALIX-m-PPE are markedly different from those of an all-p-linked phenylene ethynylene copolymer (CALIX-p-PPE) previously reported. The unexpected appearance of a low-energy emission band at 426 nm, in addition to the locally excited-state emission (365 nm), together with a quite low fluorescence quantum yield (Phi = 0.02) and a double-exponential decay dynamics led to the formulation of an intramolecular exciplex as the new emissive species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solution enthalpies of 1,4-dioxane have been obtained in 15 protic and aprotic solvents at 298.15 K. Breaking the overall process through the use of Solomonov's methodology the cavity term was calculated and interaction enthalpies (Delta H-int) were determined. Main factors involved in the interaction enthalpy have been identified and quantified using a QSPR approach based on the TAKA model equation. The relevant descriptors were found to be pi* and beta, which showed, respectively, exothermic and endothermic contributions. The magnitude of pi* coefficient points toward non-specific solute-solvent interactions playing a major role in the solution process. The positive value of the beta coefficient reflects the endothermic character of the solvents' hydrogen bond acceptor (HBA) basicity contribution, indicating that solvent molecules engaged in hydrogen bonding preferentially interact with each other rather than with 1,4-dioxane. (C) 2013 Elsevier B.V. All rights reserved.