1 resultado para partial differential equation
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (17)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (18)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (32)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (14)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Boston University Digital Common (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (51)
- CaltechTHESIS (29)
- Cambridge University Engineering Department Publications Database (26)
- CentAUR: Central Archive University of Reading - UK (43)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (30)
- Cochin University of Science & Technology (CUSAT), India (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (9)
- eScholarship Repository - University of California (1)
- Greenwich Academic Literature Archive - UK (11)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (182)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (5)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (11)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (8)
- Queensland University of Technology - ePrints Archive (129)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (99)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (32)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (14)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (15)
- University of Connecticut - USA (2)
- University of Michigan (16)
- University of Queensland eSpace - Australia (11)
- University of Southampton, United Kingdom (29)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
We study the existence and multiplicity of positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation { -div(del upsilon/root 1-vertical bar del upsilon vertical bar(2)) in B-R, upsilon=0 on partial derivative B-R,B- where B-R is a ball in R-N (N >= 2). According to the behaviour off = f (r, s) near s = 0, we prove the existence of either one, two or three positive solutions. All results are obtained by reduction to an equivalent non-singular one-dimensional problem, to which variational methods can be applied in a standard way.