1 resultado para parametric uncertainty
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (10)
- Aston University Research Archive (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (20)
- Boston University Digital Common (1)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CaltechTHESIS (5)
- Cambridge University Engineering Department Publications Database (168)
- CentAUR: Central Archive University of Reading - UK (134)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (61)
- Cochin University of Science & Technology (CUSAT), India (9)
- Collection Of Biostatistics Research Archive (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (12)
- Indian Institute of Science - Bangalore - Índia (74)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (10)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (100)
- Queensland University of Technology - ePrints Archive (126)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (30)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (39)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (12)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
In this paper, a stochastic programming approach is proposed for trading wind energy in a market environment under uncertainty. Uncertainty in the energy market prices is the main cause of high volatility of profits achieved by power producers. The volatile and intermittent nature of wind energy represents another source of uncertainty. Hence, each uncertain parameter is modeled by scenarios, where each scenario represents a plausible realization of the uncertain parameters with an associated occurrence probability. Also, an appropriate risk measurement is considered. The proposed approach is applied on a realistic case study, based on a wind farm in Portugal. Finally, conclusions are duly drawn. (C) 2011 Elsevier Ltd. All rights reserved.