4 resultados para panel data analysis
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
This paper studies the evolution of the default risk premia for European firms during the years surrounding the recent credit crisis. We employ the information embedded in Credit Default Swaps (CDS) and Moody’s KMV EDF default probabilities to analyze the common factors driving this risk premia. The risk premium is characterized in several directions: Firstly, we perform a panel data analysis to capture the relationship between CDS spreads and actual default probabilities. Secondly, we employ the intensity framework of Jarrow et al. (2005) in order to measure the theoretical effect of risk premium on expected bond returns. Thirdly, we carry out a dynamic panel data to identify the macroeconomic sources of risk premium. Finally, a vector autoregressive model analyzes which proportion of the co-movement is attributable to financial or macro variables. Our estimations report coefficients for risk premium substantially higher than previously referred for US firms and a time varying behavior. A dominant factor explains around 60% of the common movements in risk premia. Additionally, empirical evidence suggests a public-to-private risk transfer between the sovereign CDS spreads and corporate risk premia.
Resumo:
Mestrado em Contabilidade e Análise Financeira
Resumo:
Mestrado em Contabilidade e análise financeira
Resumo:
Research on cluster analysis for categorical data continues to develop, new clustering algorithms being proposed. However, in this context, the determination of the number of clusters is rarely addressed. We propose a new approach in which clustering and the estimation of the number of clusters is done simultaneously for categorical data. We assume that the data originate from a finite mixture of multinomial distributions and use a minimum message length criterion (MML) to select the number of clusters (Wallace and Bolton, 1986). For this purpose, we implement an EM-type algorithm (Silvestre et al., 2008) based on the (Figueiredo and Jain, 2002) approach. The novelty of the approach rests on the integration of the model estimation and selection of the number of clusters in a single algorithm, rather than selecting this number based on a set of pre-estimated candidate models. The performance of our approach is compared with the use of Bayesian Information Criterion (BIC) (Schwarz, 1978) and Integrated Completed Likelihood (ICL) (Biernacki et al., 2000) using synthetic data. The obtained results illustrate the capacity of the proposed algorithm to attain the true number of cluster while outperforming BIC and ICL since it is faster, which is especially relevant when dealing with large data sets.