2 resultados para oxidative DNA damage

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antineoplastic drugs are hazardous chemical agents used mostly in the treatment of patients with cancer, however health professionals that handle and administer these drugs can become exposed and develop DNA damage. Comet assay is a standard method for assessing DNA damage in human biomonitoring and, combined with formamidopyrimidine DNA glycosylase (FPG) enzyme, it specifically detects DNA oxidative damage. The aim of this study was to investigate genotoxic effects in workers occupationally exposed to cytostatics (n = 46), as compared to a control group with no exposure (n = 46) at two Portuguese hospitals, by means of the alkaline comet assay. The potential of the OGG1 Ser326Cys polymorphism as a susceptibility biomarker was also investigated. Exposure was evaluated by investigating the contamination of surfaces and genotoxic assessment was done by alkaline comet assay in peripheral blood lymphocytes. OGG1 Ser326Cys (rs1052133) polymorphism was studied by Real Time PCR. As for exposure assessment, there were 121 (37%) positive samples out of a total of 327 samples analysed from both hospitals. No statistically significant differences (Mann-Whitney test, p > 0.05) were found between subjects with and without exposure, regarding DNA damage and oxidative DNA damage, nevertheless the exposed group exhibited higher values. Moreover, there was no consistent trend regarding the variation of both biomarkers as assessed by comet assay with OGG1 polymorphism. Our study was not statistically significant regarding occupational exposure to antineoplastic drugs and genetic damage assessed by comet assay. However, health professionals should be monitored for risk behaviour, in order to ensure that safety measures are applied and protection devices are used correctly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A replicate evaluation of increased micronucleus (MN) frequencies in peripheral lymphocytes of workers occupationally exposed to formaldehyde (FA) was undertaken to verify the observed effect and to determine scoring variability. May–Grünwald–Giemsa-stained slides were obtained from a previously performed cytokinesis-block micronucleus test (CBMNT) with 56 workers in anatomy and pathology laboratories and 85 controls. The first evaluation by one scorer (scorer 1) had led to a highly significant difference between workers and controls (3.96 vs 0.81 MN per 1000 cells). The slides were coded before re-evaluation and the code was broken after the complete re-evaluation of the study. A total of 1000 binucleated cells (BNC) were analysed per subject and the frequency of MN (in ‰) was determined. Slides were distributed equally and randomly between two scorers, so that the scorers had no knowledge of the exposure status. Scorer 2 (32 exposed, 36 controls) measured increased MN frequencies in exposed workers (9.88 vs 6.81). Statistical analysis with the two-sample Wilcoxon test indicated that this difference was not significant (p = 0.17). Scorer 3 (20 exposed, 46 controls) obtained a similar result, but slightly higher values for the comparison of exposed and controls (19.0 vs 12.89; p = 0.089). Combining the results of the two scorers (13.38 vs 10.22), a significant difference between exposed and controls (p = 0.028) was obtained when the stratified Wilcoxon test with the scorers as strata was applied. Interestingly, the re-evaluation of the slides led to clearly higher MN frequencies for exposed and controls compared with the first evaluation. Bland–Altman plots indicated that the agreement between the measurements of the different scorers was very poor, as shown by mean differences of 5.9 between scorer 1 and scorer 2 and 13.0 between scorer 1 and scorer 3. Calculation of the intra-class correlation coefficient (ICC) revealed that all scorer comparisons in this study were far from acceptable for the reliability of this assay. Possible implications for the use of the CBMNT in human biomonitoring studies are discussed.