50 resultados para optical motion capture
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
The Wyner-Ziv video coding (WZVC) rate distortion performance is highly dependent on the quality of the side information, an estimation of the original frame, created at the decoder. This paper, characterizes the WZVC efficiency when motion compensated frame interpolation (MCFI) techniques are used to generate the side information, a difficult problem in WZVC especially because the decoder only has available some reference decoded frames. The proposed WZVC compression efficiency rate model relates the power spectral of the estimation error to the accuracy of the MCFI motion field. Then, some interesting conclusions may be derived related to the impact of the motion field smoothness and the correlation to the true motion trajectories on the compression performance.
Resumo:
Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a double colour laser scanned photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the colour detection process are analysed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.
Resumo:
Large area n-i-p-n-i-p a-SiC:H heterostructures are used as sensing element in a Double Color Laser Scanned Photodiode image sensor (D/CLSP). This work aims to clarify possible improvements, physical limits and performance of CLSP image sensor when used as non-pixel image reader. Here, the image capture device and the scanning reader are optimized and the effects of the sensor structure on the output characteristics discussed. The role of the design of the sensing element, the doped layer composition and thickness, the read-out parameters (applied voltage and scanner frequency) on the image acquisition and the color detection process are analyzed. A physical model is presented and supported by a numerical simulation of the output characteristics of the sensor.
Resumo:
Combined tunable WDM converters based on SiC multilayer photonic active filters are analyzed. The operation combines the properties of active long-pass and short-pass wavelength filter sections into a capacitive active band-pass filter. The sensor element is a multilayered heterostructure produced by PE-CVD. The configuration includes two stacked SiC p-i-n structures sandwiched between two transparent contacts. Transfer function characteristics are studied both theoretically and experimentally. Results show that optical bias activated photonic device combines the demultiplexing operation with the simultaneous photodetection and self amplification of an optical signal acting the device as an integrated photonic filter in the visible range. Depending on the wavelength of the external background and irradiation side, the device acts either as a short- or a long-pass band filter or as a band-stop filter. The output waveform presents a nonlinear amplitude-dependent response to the wavelengths of the input channels. A numerical simulation and two building-blocks active circuit is presented and gives insight into the physics of the device.
Resumo:
Novel alternating copolymers comprising biscalix[4]arene-p-phenylene ethynylene and m-phenylene ethynylene units (CALIX-m-PPE) were synthesized using the Sonogashira-Hagihara cross-coupling polymerization. Good isolated yields (60-80%) were achieved for the polymers that show M-n ranging from 1.4 x 10(4) to 5.1 x 10(4) gmol(-1) (gel permeation chromatography analysis), depending on specific polymerization conditions. The structural analysis of CALIX-m-PPE was performed by H-1, C-13, C-13-H-1 heteronuclear single quantum correlation (HSQC), C-13-H-1 heteronuclear multiple bond correlation (HMBC), correlation spectroscopy (COSY), and nuclear overhauser effect spectroscopy (NOESY) in addition to Fourier transform-Infrared spectroscopy and microanalysis allowing its full characterization. Depending on the reaction setup, variable amounts (16-45%) of diyne units were found in polymers although their photophysical properties are essentially the same. It is demonstrated that CALIX-m-PPE does not form ground-or excited-state interchain interactions owing to the highly crowded environment of the main-chain imparted by both calix[4]arene side units which behave as insulators inhibiting main-chain pi-pi staking. It was also found that the luminescent properties of CALIX-m-PPE are markedly different from those of an all-p-linked phenylene ethynylene copolymer (CALIX-p-PPE) previously reported. The unexpected appearance of a low-energy emission band at 426 nm, in addition to the locally excited-state emission (365 nm), together with a quite low fluorescence quantum yield (Phi = 0.02) and a double-exponential decay dynamics led to the formulation of an intramolecular exciplex as the new emissive species.
Resumo:
Wyner - Ziv (WZ) video coding is a particular case of distributed video coding (DVC), the recent video coding paradigm based on the Slepian - Wolf and Wyner - Ziv theorems which exploits the source temporal correlation at the decoder and not at the encoder as in predictive video coding. Although some progress has been made in the last years, WZ video coding is still far from the compression performance of predictive video coding, especially for high and complex motion contents. The WZ video codec adopted in this study is based on a transform domain WZ video coding architecture with feedback channel-driven rate control, whose modules have been improved with some recent coding tools. This study proposes a novel motion learning approach to successively improve the rate-distortion (RD) performance of the WZ video codec as the decoding proceeds, making use of the already decoded transform bands to improve the decoding process for the remaining transform bands. The results obtained reveal gains up to 2.3 dB in the RD curves against the performance for the same codec without the proposed motion learning approach for high motion sequences and long group of pictures (GOP) sizes.
Resumo:
O objectivo do presente trabalho foi desenvolver, implementar e validar métodos de determinação de teor de cálcio (Ca), magnésio (Mg), sódio (Na), potássio (K) e fósforo (P) em biodiesel, por ICP-OES. Este método permitiu efectuar o controlo de qualidade do biodiesel, com a vantagem de proporcionar uma análise multi-elementar, reflectindo-se numa diminuição do tempo de análise. Uma vez que o biodiesel é uma das principais fontes de energia renovável e alternativa ao diesel convencional, este tipo de análises revela-se extremamente útil para a sua caracterização. De acordo com a análise quantitativa e qualitativa e após a validação dos respectivos ensaios, apresentam-se, na Tabela 1 as condições optimizadas para cada elemento em estudo. As condições de trabalho do ICP-OES foram escolhidas tendo em conta as características do elemento em estudo, o tipo de equipamento utilizado para a sua análise, e de modo a obter a melhor razão sinal/intensidade de fundo. Para a validação dos ensaios foram efectuados ensaios de recuperação, determinados limites de detecção e quantificação, ensaios de repetibilidade e reprodutibilidade, e verificação das curvas de calibração. Na tabela 2 apresentam-se os comprimentos de onda escolhidos (livres de interferências) e respectivos limites de detecção e quantificação dos elementos analisados por ICP-OES, na posição radial e radial atenuado.
Resumo:
In this paper we present results on the optimization of multilayered a-SiC:H heterostructures for wavelength-division (de) multiplexing applications. The non selective WDM device is a double heterostructure in a glass/ITO/a-SiC:H (p-i-n) /a-SiC:H(-p) /a-Si:H(-i')/a-SiC:H (-n')/ITO configuration. The single or the multiple modulated wavelength channels are passed through the device, and absorbed accordingly to its wavelength, giving rise to a time dependent wavelength electrical field modulation across it. The effect of single or multiple input signals is converted to an electrical signal to regain the information (wavelength, intensity and frequency) of the incoming photogenerated carriers. Here, the (de) multiplexing of the channels is accomplished electronically, not optically. This approach offers advantages in terms of cost since several channels share the same optical components; and the electrical components are typically less expensive than the optical ones. An electrical model gives insight into the device operation.
Resumo:
The study of economic systems has generated deep interest in exploring the complexity of chaotic motions in economy. Due to important developments in nonlinear dynamics, the last two decades have witnessed strong revival of interest in nonlinear endogenous business chaotic models. The inability to predict the behavior of dynamical systems in the presence of chaos suggests the application of chaos control methods, when we are more interested in obtaining regular behavior. In the present article, we study a specific economic model from the literature. More precisely, a system of three ordinary differential equations gather the variables of profits, reinvestments and financial flow of borrowings in the structure of a firm. Firstly, using results of symbolic dynamics, we characterize the topological entropy and the parameter space ordering of kneading sequences, associated with one-dimensional maps that reproduce significant aspects of the model dynamics. The analysis of the variation of this numerical invariant, in some realistic system parameter region, allows us to quantify and to distinguish different chaotic regimes. Finally, we show that complicated behavior arising from the chaotic firm model can be controlled without changing its original properties and the dynamics can be turned into the desired attracting time periodic motion (a stable steady state or into a regular cycle). The orbit stabilization is illustrated by the application of a feedback control technique initially developed by Romeiras et al. [1992]. This work provides another illustration of how our understanding of economic models can be enhanced by the theoretical and numerical investigation of nonlinear dynamical systems modeled by ordinary differential equations.
Resumo:
A two terminal optically addressed image processing device based on two stacked sensing/switching p-i-n a-SiC:H diodes is presented. The charge packets are injected optically into the p-i-n sensing photodiode and confined at the illuminated regions changing locally the electrical field profile across the p-i-n switching diode. A red scanner is used for charge readout. The various design parameters and addressing architecture trade-offs are discussed. The influence on the transfer functions of an a-SiC:H sensing absorber optimized for red transmittance and blue collection or of a floating anode in between is analysed. Results show that the thin a-SiC:H sensing absorber confines the readout to the switching diode and filters the light allowing full colour detection at two appropriated voltages. When the floating anode is used the spectral response broadens, allowing B&W image recognition with improved light-to-dark sensitivity. A physical model supports the image and colour recognition process.
Resumo:
A visible/near-infrared optical sensor based on an ITO/SiOx/n-Si structure with internal gain is presented. This surface-barrier structure was fabricated by a low-temperature processing technique. The interface properties and carder transport were investigated from dark current-voltage and capacitance-voltage characteristics. Examination of the multiplication properties was performed under different light excitation and reverse bias conditions. The spectral and pulse response characteristics are analysed. The current amplification mechanism is interpreted by the control of electron current by the space charge of photogenerated holes near the SiOx/Si interface. The optical sensor output characteristics and some possible device applications are presented.
Resumo:
In this paper, we present results on the use of multilayered a-SiC:H heterostructures as a device for wavelength-division demultiplexing of optical signals. These devices are useful in optical communications applications that use the wavelength division multiplexing technique to encode multiple signals into the same transmission medium. The device is composed of two stacked p-i-n photodiodes, both optimized for the selective collection of photo generated carriers. Band gap engineering was used to adjust the photogeneration and recombination rate profiles of the intrinsic absorber regions of each photodiode to short and long wavelength absorption in the visible spectrum. The photocurrent signal using different input optical channels was analyzed at reverse and forward bias and under steady state illumination. A demux algorithm based on the voltage controlled sensitivity of the device was proposed and tested. An electrical model of the WDM device is presented and supported by the solution of the respective circuit equations.
Resumo:
We present structural, optical and transport data on GaN samples grown by hybrid, two-step low temperature pulsed laser deposition. The band gap of samples with good crystallinity has been deduced from optical spectra. Large below gap band tails were observed. In samples with the lowest crystalline quality the PL spectra are quite dependent on spot laser incidence. The most intense PL lines can be attributed to excitons bounded to stacking faults. When the crystalline quality of the samples is increased the ubiquitous yellow emission band can be detected following a quenching process described by a similar activation energy to that one found in MOCVD grown samples. The samples with the highest quality present, besides the yellow band, show a large near band edge emission which peaked at 3.47 eV and could be observed up to room temperature. The large width of the NBE is attributed to effect of a wide distribution of band tail states on the excitons. Photoconductivity data supports this interpretation.
Resumo:
The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.
Resumo:
Characteristics of tunable wavelength pi'n/pin filters based on a-SiC:H multilayered stacked cells are studied both experimental and theoretically. Results show that the device combines the demultiplexing operation with the simultaneous photodetection and self amplification of the signal. An algorithm to decode the multiplex signal is established. A capacitive active band-pass filter model is presented and supported by an electrical simulation of the state variable filter circuit. Experimental and simulated results show that the device acts as a state variable filter. It combines the properties of active high-pass and low-pass filter sections into a capacitive active band-pass filter using a changing photo capacitance to control the power delivered to the load.