7 resultados para optical microscopy

em Repositório Científico do Instituto Politécnico de Lisboa - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deuterium NMR was used to investigate the orientational order in a composite cellulosic formed by liquid crystalline acetoxypropylcellulose (A PC) and demented nematic 4'-penty1-4-cyanobiphenyl (5CB-4 alpha d(2)) with the per centage of 85% A PC by weight Three forms of the composite including electro spun microfibers, thin film and bulk samples were analyzed The NMR results initially suggest two distinct scenarios, one whet e the 503-alpha d(2), is confined to small droplets with dimensions smaller than the magnetic coherence length and the other where the 503-alpha d(2) molecules arc aligned with the A PC network chains Polarized optical microscopy (POW from thin film samples along with all the NMR results show the presence of 5CB-alpha d(2) droplets in the composite systems with a nematic wetting layer at the APC-5CB-alpha d(2) interface that experiences and order disorder transition driven by the polymer network N-I transition The characterization of the APC network I-N transition shows a pronounced subcritical behavior within a heterogeneity scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

n a recent paper we reported an experimental study of two N-alkylimidazolium salts. These ionic compounds exhibit liquid crystalline behaviour with melting points above 50 degrees C in bulk. However, if they are sheared, a (possibly non-equilibrium) lamellar phase forms at room temperature. Upon shearing a thin film of the material between microscope slides, textures were observed that are strikingly similar to liquid (wet) foams. The images obtained from polarising optical microscopy (POM) were found to share many of the known quantitative properties of a two-dimensional foam coarsening process. Here we report an experimental study of this foam using a shearing system coupled with POM. The structure and evolution of the foam are investigated through the image analysis of time sequences of micrographs obtained for well-controlled sets of physical parameters (sample thickness, shear rate and temperature). In particular, we find that there is a threshold shear rate below which no foam can form. Above this threshold, a steady-state foam pattern is obtained where the mean cell area generally decreases with increasing shear rate. Furthermore, the steady-state internal cell angles and distribution of the cell number of sides deviate from their equilibrium (i.e. zero-shear) values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using optical microscopy, phase shifting interferometry, and atomic force microscopy, we characterize the undulated structures which appear in the meniscus of freestanding ferroelectric smectic-C* films. We demonstrate that these periodic structures correspond to undulations of the smectic-air interface. The resulting striped pattern disappears in the untilted smectic-A phase. The modulation amplitude and wavelength of the instability both depend on meniscus thickness. We study the temperature evolution and propose a model that qualitatively accounts for the observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe a novel, low-cost and low-tech method for the fabrication of elastomeric Janus particles with diameters ranging from micrometers to millimeters. This consists of UV-irradiating soft urethane/urea elastomer spheres, which are then extracted in toluene and dried. The spheres are thus composed of a single material: no coating or film deposition steps are required. Furthermore, the whole procedure is carried out at ambient temperature and pressure. Long, labyrinthine corrugations ("wrinkles") appear on the irradiated portions of the particles' surfaces, the spatial periodicity of which can be controlled by varying the sizes of particles. The asymmetric morphology of the resulting Janus particles has been confirmed by scanning electron microscopy, atomic force microscopy, and optical microscopy. We have also established that the spheres behave elastically by performing bouncing tests with dried and swollen spheres. Results can be interpreted by assuming that each sphere consists of a thin, stiff surface layer ("skin") lying atop a thicker, softer substrate ("bulk"). The skin's higher stiffness is hypothesized to result from the more extensive cross-linking of the polymer chains located near the surface by the UV radiation. Textures then arise from competition between the effects of bending the skin and compressing the bulk, as the solvent evaporates and the sphere shrinks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Helically twisted fibers can be produced by electrospinning liquid-crystalline cellulose solutions. Fiber topographies are studied by atomic force microscopy, scanning electron microscopy (see figure) and polarized optical microscopy. The fibers have a nearly universal pitch-to-diameter ratio and comprise both right- and left-handed helices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phase behaviour of a number of N-alkylimidazolium salts was studied using polarizing optical microscopy, differential scanning calorimetry and X-ray diffraction. Two of these compounds exhibit lamellar mesophases at temperatures above 50 degrees C. In these systems, the liquid crystalline behaviour may be induced at room temperature by shear. Sheared films of these materials, observed between crossed polarisers, have a morphology that is typical of (wet) liquid foams: they partition into dark domains separated by brighter (birefringent) walls, which are approximately arcs of circle and meet at "Plateau borders" with three or more sides. Where walls meet three at a time, they do so at approximately 120 degrees angles. These patterns coarsen with time and both T1 and T2 processes have been observed, as in foams. The time evolution of domains is also consistent with von Neumann's law. We conjecture that the bright walls are regions of high concentration of defects produced by shear, and that the system is dominated by the interfacial tension between these walls and the uniform domains. The control of self-organised monodomains, as observed in these systems, is expected to play an important role in potential applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A celulose é o polímero renovável mais abundante do mundo. É conhecido pela sua excelente biocompatibilidade, propriedades térmicas e mecânicas. A celulose assim como os polipéptideos e o ADN, pertence a uma família de moléculas orgânicas que dão origem à formação de fases líquidas cristalinas (LCs) colestéricas. A Passiflora Edulis, tal como outras plantas trepadeiras, possui longas e flexíveis gavinhas que permitem à planta encontrar um suporte para se fixar. As gavinhas podem assumir a forma de espirais ou de hélices consoante sejam sustentadas por apenas uma ou por ambas as extremidades. As hélices apresentam muitas vezes duas porções helicoidais, uma esquerda e outra direita, separadas por um segmento recto denominado perversão. Este comportamento é consequência da curvatura intrínseca das gavinhas produzidas pela planta trepadeira. O mesmo comportamento pode ser observado em micro e nanofibras celulósicas fabricadas a partir de soluções líquido-cristalinas, numa escala três a quatro ordens de grandeza inferior à das gavinhas. Este facto sugere que o modelo físico utilizado tenha invariância de escala. Neste trabalho é feito o estudo de fibras e jactos que imitam as estruturas helicoidais apresentadas pelas gavinhas das plantas trepadeiras. As fibras e jactos são produzidos a partir de soluções líquidas cristalinas celulósicas. De modo a determinar as características morfológicas e estruturais, que contribuem para a curvatura das fibras, foram utilizadas técnicas de imagem por ressonância magnética (MRI), microscopia óptica com luz polarisada (MOP), microscopia electrónica de varrimento (SEM) e microscopia de força atómica (AFM) . A variação da forma das estruturas helicoidais com a temperatura parece ser relevante para o fabrico de membranas não tecidas para aplicação em sensores termo-mecânicos.