5 resultados para neutron - rich nucleus high - spin states
em Repositório Científico do Instituto Politécnico de Lisboa - Portugal
Resumo:
Here, we use Andreev reflection spectroscopy to study the spin polarization of high quality CrO2 films. We study the spin polarization as a function of growth temperature, resulting in grain size and electrical resistivity. In these films low temperature growth appears to be a necessary but not sufficient condition to guarantee the observation of high spin polarization, and this is only observed in conjunction with suppressed superconducting gap values and anomalously low interface properties. We suggest that this combination of observations is a manifestation of the long range spin triplet proximity effect. (C) 2007 American Institute of Physics.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples–Triticum aestivum L. (Jordão/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93–117 and 26,400–31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4–30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordão presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordão and Marialva cultivars accumulated not statistically significant different concentrations of different metals. The advantages of using INAA are the multielementality, low detection limits and use of solid samples (no need of digestion).
Resumo:
Chromium dioxide (CrO2) has been extensively used in the magnetic recording industry. However, it is its ferromagnetic half-metallic nature that has more recently attracted much attention, primarily for the development of spintronic devices. CrO2 is the only stoichiometric binary oxide theoretically predicted to be fully spin polarized at the Fermi level. It presents a Curie temperature of ∼ 396 K, i.e. well above room temperature, and a magnetic moment of 2 mB per formula unit. However an antiferromagnetic native insulating layer of Cr2O3 is always present on the CrO2 surface which enhances the CrO2 magnetoresistance and might be used as a barrier in magnetic tunnel junctions.